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Abstract
Current programming languages and techniques realize 
many features which allow their users to extend these 
languages on a semantic basis: classes, functions, inter-
faces,  aspects and other entities can be defined. However, 
there is a lack of modern programming languages which 
are both semantically and syntactically extensible from 
within the language itself, i.e., with no additional tool or 
meta-language. In this paper we present π as an approach 
that aims to overcome this lack. π provides an abstraction 
mechanism based on parameterized symbols which is ca-
pable of semantically and syntactically unifying program-
ming concepts like variables, control-structures, procedures 
and functions into one concept: the pattern. We have evalu-
ated the abstraction potential and the syntactic extensibility 
of π by successfully creating patterns for the aforemen-
tioned programming concepts. π could serve as a tool for 
designing new experimental languages and might generally 
influence the view we have on current programming con-
cepts.
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Techniques]: Automatic Programming;  D.2.10 [Software 
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1. Introduction

1.1. Motivation and Problem

Language Design The authors were experimenting with 
new programming languages in the field of naturalistic 
design. Hereby, the overall process of creating new experi-
mental languages seemed inconvenient to us: the syntax has 
to be specified in a modified way fitting exactly the gram-
matical requirements of a particular parser; then,  helper 
code has to be written to dissect the parse-tree. Finally, the 
semantics (in the form of code fragments) are added by 
assigning a meaning to the nodes of the parse-tree. We 
found that this process is very tedious and error-prone; 
thus, we stipulate that there should be a cleaner and easier 
way to create new (experimental) languages.

Macros and Notation The use of macros is popular and 
widespread,  ranging over different languages from C to 
LISP. Macros give the programmers more control over the 
language. Yet, a lot of contemporary programming 
languages lack a syntactic macro facility. Current languages 
are "given" to us by some company, language designer or 
independent project group. Certainly, we would design 
some features different in some way or introduce new fea-
tures sooner as they would maybe happen to come with the 
next release. A macro facility would be a way to mobilize 
our creativity for the overall advancement of a language. 
Therefore, there should be a clean and easy way to syntac-
tically extend languages.

Domain Specific Languages DSLs play an increasingly 
important role,  in research as well as in practice. This kind 
of languages – and especially the philosophy behind – ad-
dresses the need for well adjusted notations for specific 
problem domains. Furthermore, DSLs  could be a great 
help to find a common language with both the customers 
and the developers to specify the requirements of software. 
We think that domain specific modeling needs an adequate 
language, i.e., there should be a clean and easy way to de-
sign new domain specific languages and notations.

Abstraction Itself  Certain ideas of contemporary pro-
gramming technologies have something very deep in com-
mon: they all are the result of (computer) scientists' drive 
for abstraction. Assembler programmers had to deal with 
ever repeating tasks in their programs. They would intro-
duce labels so that code-fragments can be reused in an ab-
stract way. Then,  they would soon use a stack to pass "val-
ues" to the labeled code fragment. What followed is the 



birth of functions and modules (of functions). Functions in 
turn led to generic functions and classes, classes led to ge-
neric classes and aspects, aspects lead to... ? This whole 
process is about abstraction. So, our question was: if all 
advancement in programming languages is abstraction, 
both semantic and syntactic, why then isn't there a language 
which is completely dedicated to that paradigm? Would 
current programming techniques appear as facets of some 
general abstraction mechanism behind the scene?

1.2. The Essence: Patterns

"A pattern is a plan that has some number of parts and shows 
you how each part turns a face to the other parts, how each 
joins with the other parts or stands off [...]. A pattern should 
give hints or clues as to when and where it is best put to use.  [...] 
some of the parts of a pattern may be holes, or slots, in which 
other things may be placed at a later time." — Christopher 
Alexander

What do the scenarios described so far have in common? In 
each scenario, a programmer defines one or more code 
fragments, i.e. whole languages or DSLs, macros or func-
tions, and assigns a certain syntax to them, respectively the 
language- or DSL-syntax, the macro-syntax or the function-
syntax (the function signature).  This syntax, having pa-
rameters, introduces a context that brings variability to the 
code fragment: the syntax is a parameterized symbol with 
an associated meaning,  the code-fragment. The particular 
motivation varies from scenario to scenario. However, the 
essence of this is the creation of a pattern1. We denote that 
as follows:

symbol ➞ meaning

1.2..1 The Parameterization of Symbols

"A good pattern will say how changes can be made in the 
course of time. Thus some choices of the plan are built in as 
part of the pattern [...]. In this way a pattern stands for a de-
sign space in which you can choose, on the fly, your own path 
for growth and change." — Christopher Alexander

We briefly visit semiotics as semiotics is the basis of our 
work.  In our culture, symbols are combined to create more 
complex symbols with more complex and more concise 
meanings. For instance, the following sign has the meaning 
that something is prohibited. It leaves a space to symbolize 
this unwanted thing or action:

 
1 Our notion of a pattern is only indirectly related to the notion of a design 

pattern well-known from the book "Design Patterns. Elements of Reus-
able Object-Oriented Software." by Erich Gamma et al.; to some extent 
those patterns could be modeled in a pattern language like π. Neither is 
our notion of a pattern language related to the BETA-language [24] 
except for the fact that BETA unifies classes and methods –   like 
π does – into the concept of a "pattern".

This symbol is a parameterized symbol (or short: syn-
tax).  Together with its meaning it establishes a pattern. 
Slots describe the existence of these concrete possibilities 
within the symbol for customizing them by other parameter 
symbols (or short: parameters).  The slots in the following 
mathematical sum symbol are illustrated on the right by 
dashed boxes:

The slots at the following example from programming 
are underlined:
while (i <= 10) {
   sum += a[i];
}

while (expression) {
   instructions
}

We call the set of all symbols which could be created on 
the basis of a parameterized symbol by inserting other 
symbols as parameters into the slots the concretization of 
the parameterized symbol. The concretization of a pattern 
is then the concretization of the parameterized symbol of 
the pattern if it has one; synonymous notions are: the sym-
bols realized by a pattern, the applications of a pattern or 
the symbols derived from the pattern. We say that a symbol 
matches a pattern if it is part of the concretization of the 
respective pattern.

Given a symbol of a pattern, we call the symbols that 
fill the slots of that pattern the sub-symbols (or primary 
sub-symbols) of the respective symbol, the sub-symbols of 
the sub-symbols accordingly sub-sub-symbols (or secon-
dary sub-symbols), and so on.

The slot in the prohibition sign here is untyped,  i.e., any 
symbol can be inserted here whereas the slots in the while-
loop are typed: only expressions and instructions can be 
used as valid parameter symbols. In general, any predicate 
could be used to define the type of a slot – as with predicate 
dispatch in programming.

1.2..2 Programming and Semiotics
Programming is a special form of communication which 
aims at communicating an expected behavior from a send-
ing system, e.g., a person, a computer or a machine, to a 
receiving system. The programming is successful when the 
receiving system shows the intended behavior.  The lan-
guage used to communicate the behavior is a programming 
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language. This process is symbolic. The process of agree-
ing on the meaning of a symbol involves making the actual 
link between the symbol and the meaning at some time. 
Any parameterized entity is able to be a container for 
meaning.

In semiotics,  the relation between a symbol and "its" 
meaning is represented by the semiotic triangle:1

In this diagram, the relation between a symbol (syntax) 
and its referent (meaning) is shown as an imputed relation 
which is created by our mind, having a thought (pattern). 
For instance, the sequence of Latin characters "cow" (syn-
tax; only for the speakers of English,  of course) refers to 
the idea of the actual entity "cow" (meaning).  This is our 
"cow-pattern" we have in mind.

1.3. The Goal: A Pattern Language
"This leads me to claim that, from now on, a main goal in 
designing a language should be to plan for growth.  [...] Lisp 
was designed by one man, a smart man, and it works in a way 
that I think he did not plan for. In Lisp, new words defined by 
the user look like primitives and, what is more, all  primitives 

look like words defined by the user!"2 — Guy Steele

Coming back from general semiotics to programming, the 
important questions are the following: what would the es-

 
1 The idea of the semiotic triangle has been developed by several philoso-

phers at different times. Therefore, the actually used notions for three 
constituents of the semiotic triangle vary a lot, although the idea behind 
them is the same.  Charles Kay Ogden and Ivor Armstrong Richards  use 
the trinity symbol/thought/referent Charles Sanders Peirce icon/
interpretant/object and Ferdinand de Saussure (Charles Sanders Peirce 
and Ferdinand de Saussure are two of the founders of modern semiotics) 
signifiant/signifié/chose. In other systems, the word "meaning" denotes 
what is called "thought" in the semiotic triangle as described here, since 
the thought is the meaning of a symbol. However, as in our notation the 
meaning of the symbol is explicitly stated by the meaning-part of the 
pattern we decided to call this part meaning instead of denotation or 
referent. Actually, the construction corresponding to "thought" in the 
semiotic triangle, is the whole pattern, or at least the part
symbol ➞ meaning.

2 This citation and all others of Guy Steel are taken from his speech 
"Growing a Language" on the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications 
(OOPSLA), 1998.
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sential features of a pattern-language be? what should a 
pattern-language look like? We think that a pattern-
language should support…

a) full syntactical extensibility:  the definition of arbi-
trary new (context-free) syntax is possible – in order to 
provide a mean for recording recurrent programming 
patterns. Speaking abstract, the ideal language realiz-
ing what we wish would have the means to associate 
any syntax with any given meaning – dynamically. 
Thus, it should have some facility of the form:

syntax ➞ meaning

b) (syntactic) homogeneity: the integration of new syn-
tax is seamless. The same criteria has been defined for 
good macro languages; Brabrand and Schwartzbach 
say about the "ideal macro language" [7]: "[it] would 
allow all nonterminals of the host language grammar 
to be extended with arbitrary new productions, defin-
ing new constructs that appear to the programmer as if 
they were part of the original language."

c) full semantical grounding:  the meaning of every 
symbol (expression) in the language, except for a 
minimal predefined core language, is defined /
 definable by other expressions of the language in a 
non-circular way. This property holds for current pro-
gramming languages, too; however, we want to em-
phasize that the core language, which all other patterns 
are defined on top, should be minimal. This property 
shall not be mistaken for being able to prove termina-
tion of a program.

d) reflection completeness: every entity of the language 
– and of the interpreter, for example, instructions, 
functions and concepts, is referenceable from within 
the language.

e) meta-completeness:  there is a meta-level to talk 
about the language itself (which is provided by 
reflection-completeness). This meta-level language 
does neither syntactically nor semantically (in the way 
it is evaluated) differ from the rest of the language, it 
actually is (syntactically) the same language and does 
not open a cascade of meta-levels; for instance, LISP 
is meta-complete. This aspect is related to homogene-
ity and includes the sub-aspect full syntactical ground-
ing: every aspect of the grammar describing the lan-
guage is expressible in the language itself.

f) full semantical extensibility:  this is fulfilled by 
nearly all programming languages, only machine code 
having no mean of abstraction, e.g. functions; we add 
it here for the sake of completeness.



Such a language could solve the problems we have encoun-
tered:

• The design of new languages or DSLs would be eased 
as these languages could be defined as libraries of an 
extensible language.

• A special macro facility would not be necessary be-
cause syntactic extensions would be available directly 
in the language.

• A pattern-language would exactly model what abstrac-
tion in programming is: recognizing a repeating pat-
tern,  naming it, declaring a symbol for it and making it 
context-dependent by parameterization.

1.4. Our Proposal in a Nutshell

A π-program is a sequence of instruction symbols (techni-
cally, sentences), each being a sequence of (Unicode) char-
acters. The sentences are then evaluated (executed) in the 
respective order. There is only one language construct in π: 
the pattern. Patterns are, simply speaking, EBNF-
expressions with an associated meaning; a pattern can be 
easiest understood as a function with a syntactically com-
plex (context-free) "signature". The non-terminal symbols 
in the signature are then the parameters of the pattern.

A new parameterized symbol (syntax) is defined by the 
pattern-declaration instruction (the parameters are under-
lined here):
declare_pattern ≔ syntax ➞ meaning;

This notation reduces the pattern-definition to the abso-
lutely necessary: syntax and meaning. In addition to that, 
patterns can be named and in order to provide type safety, 
each pattern can have an (explicit) type. This type defines 
all places where the occurrence of the respective symbol 
will be valid in the program. So the complete pattern-
declaration instruction looks as follows:
declare_pattern name ≔ syntax ⇒ type ➞ meaning;

An example: the following pattern declaration defines 
both the syntax and the semantics of integer-potentiation 
symbols like, for instance, 174^3 or 2^19. All constructs 
used here for defining the meaning of that pattern are pre-
defined in π and can for now be interpreted in an intuitive 
way (see below; %W- suppresses the occurrence of 
whitespaces):
declare_pattern
   integer_potentiation ≔
   integer:i %W- "^" %W- integer:j

   ⇒ integer ➞
   {
      int result = i;
      for (int k = 1; k <= j-1; k++)
         result *= i;
      return result;
   };

After the declaration of that pattern, its applications can 
be immediately used at any place where an integer symbol 
may occur, e.g., in an instruction like print(174^3);.

We will see later that the pattern-declaration instruction 
and any other of the predefined instructions of π, the so 
called "core-pattern-set", are patterns themselves; they are, 
for instance, instruction patterns like the pattern-declaration 
instruction, the print instruction and the for-loop or data 
patterns like the integer pattern or the pattern pattern – yes, 
a pattern is a pattern itself, its syntax is as follows:
name "≔" syntax "⇒" type "➞" meaning

Thus, the actual pattern-declaration instruction has the 
following syntax, i.e., it takes a pattern as a parameter:
"declare_pattern" pattern ";"

The following little code-fragment is a complete π-
program consisting of two pattern-declaration instructions 
and two other (predefined) instructions, print and if, 
immediately making use of the just defined symbols (the 
operators ">" and "? :" are predefined patterns):
(1) declare_pattern maximum ≔
       "max" "(" integer:a "," integer:b ")"
       ⇒ integer ➞ ( a > b ) ? a : b;

(2) print( max (13^2, 101) );

(3) declare_pattern absolute_value ≔
       "|" integer:i "|" ⇒ integer ➞
       ( i ≥ 0 ) ? i : -i;

(4) if ( max (13^2, |-171|) > 169 )
       print ("yes!");

After the first pattern-declaration (line 1), the interpreter 
would "know" the pattern "maximum". Therefore the sec-
ond instruction (line 2) is correctly interpreted. After the 
second pattern-declaration (line 3), the interpreter knows 
both the user-defined patterns "maximum" and "absolute-
value" and can correctly interpret the last instruction-
symbol (line 4) which is making use of both of them.

1.5. Our Contribution
With this work, we contribute to the current research in two 
ways; the following is our hard contribution:

Development of a Powerful Abstraction Concept Based 
on the conviction that the essence of programming is ab-
straction,  we created a programming language that is com-
pletely dedicated to that idea – π. π integrates and abstracts 
ideas from several different fields such as macros and DSLs 
into a very expressive post-paradigmatic language. Even-
tually, π is an approach of creating not only a semantically 
but also a syntactically minimal language.

Implementation of a Pattern-Language π is the first 
implementation of a pattern language. Technically,  a pat-
tern language is a language in which other programming 
languages are both syntactically as well as semantically 
reproducible with additional syntactic-extensibility and 
which fulfills all the criteria defined in section 1.3.



Our soft contribution, namely the philosophy behind π, will 
be discussed in chapter 7 of this work.

1.6. An Overview of this Work

In the following chapter, we describe the π-language. After 
that, we briefly discuss our implementation of the π-
interpreter. We then evaluate the expressiveness of π by 
defining several language constructs existing in current 
programming languages in π. Afterwards,  we provide an 
overview on related ideas. Finally, we conclude this work 
with a discussion of future work and a résumé.

2. The Language
"But instead of designing a thing, you need to design a way of 
doing." — Guy Steele

In the preceding chapter we defined the notation of a pat-
tern as a parameterized symbol with an associated meaning 
and we have seen a pattern-declaration instruction to intro-
duce new patterns to π.  Now, we concretely describe how 
to define patterns and how to use the symbols derived from 
these patterns.

2.1. The Syntax-Pattern

First of all, π does not have a syntax in a traditional 
sense: it is not the language which has a syntax, but each 
single pattern has its syntax. π has predefined patterns (the 
core pattern set; short CPS) and user-defined-patterns; the 
language is the set of these patterns. However, even the 
syntax of predefined patterns can be dynamically changed –
 thus effecting all following instructions, i.e., there is no 
fixed syntax in π at all.

As with typical grammars, the syntax of a pattern de-
fines the way the characters have to be assembled in order 
to represent the respective parameterized symbol of the 
pattern. The syntax of a pattern is defined like the right side 
of an EBNF production rule since the latter can be seen as a 
parameterized symbol with the nonterminal symbols repre-
senting the slots of the parametrized symbol. We call our 
form of EBNF π-EBNF what is something like the domain-
specific syntax sub-language of π for the definition of pat-
terns. What follows is the definition of π-EBNF written in 
π-EBNF itself; this is no coincidence as all "syntax" in π is 
just a symbol derived from the predefined syntax pattern of 
the core pattern set (the non-terminals,  i.e.,  the slots, are 
underlined in the rules):
syntax ≔ constant_syntax | slot_syntax |

    sequence_syntax | optional_syntax |
    or_syntax | zero_or_more_syntax |
    one_or_more_syntax | bracketed_syntax

constant_syntax ≔ »"« { character } »"« [":" name]

slot_syntax     ≔ %I ( pattern_name ) [":" name]

sequence_syntax ≔ syntax ⁅ syntax ⁆

optional_syntax ≔ "[" syntax "]" [":" name]

or_syntax       ≔ syntax ⁅ "|" syntax ⁆

zero_or_more_syntax ≔ "{" syntax "}" [":" name]

one_or_more_syntax  ≔ "⁅" syntax "⁆" [":" name]

bracketed_syntax    ≔ "(" syntax ")" [":" name]

We call the sequence-syntax, the or-syntax, the zero-or-
more-syntax and the one-or-more-syntax multi-slots as 
these syntax-rules hold not only one slot but several slots. 
Nearly all syntax-patterns support an optional name so that 
they can be referenced when defining the meaning of a 
pattern. Names have to be unique only on the same level of 
nesting.

In π, the lexer is completely integrated into the parser as 
the π-lexer does nothing but classify the input characters 
into categories such as letters,  digits, whitespaces and the 
like. That way, all literal symbols, e.g.,  the integer or float 
ing-point-number literals, can be defined by regular π-
patterns (integer pattern and floating-point-number pattern 
in the CPS; or short "int" and "float") and there are no 
name-clashes at all with "keywords" like it is the case in a 
lot of current programming languages. π has a notation for 
different whitespaces, e.g., %S_ stands for a medium 
whitespace and %W- for no whitespace. Furthermore, 
π supports syntax for additional formatting as %I for italic 
font and %U for underlined text or %SUPER for superscript 
characters.

2.2. The Meaning-Pattern
We now assign a meaning to the pattern-syntax.  The mean-
ing of new patterns in π is defined by making use of sym-
bols derived from already existing patterns, which are,  after 
the startup of the interpreter, only the patterns predefined in 
the core pattern set (in this section, we will introduce sev-
eral core-patterns along the way). In π, the difference be-
tween "language" and "program" vanishes: "language" is 
just an alternative name for the core pattern set and "pro-
gram" denotes the actual symbolic input to the interpreter 
including the set of user-defined patterns. Let us have a 
look at the following two examples:
declare_pattern ≔ "e" ➞ 2.718281828459;

declare_pattern ≔ integer:i "^2" ➞ i * i;

The first of these easy pattern definitions defines the 
symbol "e" to be an approximation of Euler's number. The 
second pattern defines the meaning of a squared-integer 
symbol, i.e.,  an integer symbol followed by a constant 
symbol "^2" meaning the product of the integer with itself. 
The integer-multiplication pattern is a pattern in the CPS: 
its meaning is predefined as the integer-symbol which is the 
"conventional result" of the integer-multiplication. Let us 
have a look at another example:



pattern ≔ "count_up_to" "(" integer:i ")" ➞

{
   int j = 1;
   while (j <= i)
   {
      print (j);
      j++;
   }
}

This pattern-definition resembles very strong a conven-
tional method declaration in C-style-languages. This is the 
point were semiotic theory meets with programming: on the 
one hand, it is true,  this pattern definition is like a C-
method definition; on the other hand, we do exactly the 
same as before: we are defining the meaning of a parame-
terized symbol by making use of already predefined sym-
bols, respectively predefined patterns. So, the general ap-
proach is the same, it differs only in the kind of patterns we 
use: before, we used a constant and an operator symbol, 
now we use "algorithmic" symbols like the block or the 
while-loop symbol; both are in the CPS as well as the 
integer-variable-declaration pattern, the smaller-comparison 
pattern, the increment pattern and the print pattern:
"int" name ["=" integer:initial_value]

"while" "(" expression ")" instruction

integer "<=" integer

integer "++"

"print" "(" symbol ")"

As we have seen,  the meaning of a pattern can be de-
fined in two ways, we call them the "functional" and the 
"imperative" style. In π, this looks as follows:
meaning ≔ functional_meaning | imperative_meaning

functional_meaning ≔ expression

imperative_meaning ≔ instruction

Both styles represent two sides of the same coin: what 
else is a "calculation"(-function) than performing actions on 
symbols, i.e., symbol-manipulation? What else is an in-
struction than a function having side-effects? π-symbols, as 
any other symbol in programming, encode behavior of a 
computer system. So, the relevant thing is not how behavior 
is defined but that it is defined correctly.

2.2..1 Parameter Binding
We now have a look at how the symbols in the slots of the 
patterns are made available for the meaning definition, i.e., 
how they can be referenced in the meaning definition. In 
imperative languages this making available is done by 
treating the parameters of a method like locally defined 
variables, being implicitly initialized on a method call. In π, 
explicit referencing is similar to – yet not alike – the way 
just described.

Look at the following pattern which aims at defining a 
convenient lightweight notation for printing a non-empty 

list of integers as print(3,2,8,1) (the for-loop pattern is 
a user-defined pattern based on the while pattern):
print_integers ≔
   "print" "(" integer:first
   { "," integer:i }:following ")" ➞
{
   print (first);
      
   if ( present(following) )
      for (int k=0; k<=size_of(following)-1; k++)
         print( following[k].i );
}

The first parameter of the print-integers pattern is refer-
enced by "first". The name of the following zero-or-more 
symbol of integers, each separated by a comma, is 
"following". The content of the sequence is referenced us-
ing the widespread array-notation: "following[k]".  The 
"."-notation allows to access the sub-elements of multi-
slots: "following[k].i". The length of the sequence can be 
retrieved by the size-of pattern and the present-pattern 
checks the presence or absence of some optional symbol 
(both these patterns are in the CPS).

The parameters of less complex patterns can be refer-
enced by their type instead of a name whenever this is pos-
sible  without ambiguity; we call this implicit referencing:
"twice" "(" integer ")" ➞ 2 * integer

We sometimes need to reference not only the parame-
ters of the pattern but also the sub-symbols of these pa-
rameters. We call this kind of referencing pass-through 
referencing. The notation is analogous to the "."-notation 
for referencing the sub-elements of multi-slots.

Assuming that the integer pattern is defined as follows:
integer ≔ non_zero_digit:first_digit

   { digit }:following_digits

Then,  a pattern to calculate the nth digit of an integer 
can be defined as follows:
declare_pattern ≔ "nth_digit" "(" integer:index

                              "," integer:i ")" ➞
{
   if (index = 1)
      return i.first_digit;
   
   return i.following_digits[index-2].digit;
}

2.2..2 Recursion

There are two types of recursion in π which correspond to 
the two main parts a pattern consist of: semantic recursion 
and syntactic recursion. The former recursion is the usage 
of the symbols defined by the pattern in the meaning-
definition of the pattern itself, the latter is the usage of the 
pattern in its own pattern-syntax.  The following example 
for syntactic recursion defines an array pattern which can 
have multi-dimensional sub-arrays (an array, like all data 
patterns does not need a meaning as there is nothing to 
evaluate with pure data, e.g. all literals in π are data sym-
bols):



array ≔ "[" array | integer

   { "," array | integer }:following "]"
   ⇒ data

2.2..3 Reflection

It is an essential part of the philosophy of π is that all enti-
ties and all functionality of the language (technically, the 
interpreter) are fully accessible from within the language. 
In the introduction, we called this property reflection com-
pleteness.  Consequently,  all actions the interpreter supports 
and all data-types it uses are available within the language 
as predefined patterns,  for instance, there is an evaluate 
pattern (which is similar to the eval-command in other 
languages; the parsed-symbol pattern is the parse-tree in π):
evaluate ≔ "evaluate" "(" parsed_symbol ")"

   ⇒ symbol

2.3. The Name and the Type

Pattern-names in π are predefined symbols as any other, 
even though they fulfill the important function of – spea-
king in terms of the semiotic triangle – making the link 
between syntax and semantic tangible. The name of a pat-
tern must be unique.
π has a strong, dynamic, explicit type system. The type 

of a pattern defines both where the symbols defined by the 
pattern may occur in the input, i.e.,  the replacement scheme 
of the grammar and the pattern of the resulting symbol pos-
sibly calculated by the pattern. For instance, the type of the 
integer-sum-pattern is integer, too:

integer_sum ≔ integer "+" integer ⇒ integer

The type of a symbol is the type of the corresponding 
pattern. The implicit super-type of all patterns is symbol.
π supports "higher-order-patterns"; for example, the 

pattern-declaration pattern takes a pattern as a parameter. 
Patterns in π are just all symbols that can be derived from 
the pattern-pattern.

2.3..1 Type Safety and Static Semantic

As in π patterns – and with the patterns new symbols – can 
be declared dynamically, there cannot be any static seman-
tic of a π-program. Nonetheless, π is a dynamically type-
checked programming language since all resulting symbols 
are dynamically checked (parsed) for their pattern. Accord-
ing to the philosophy of π, it is open to the programmer if 
she/he wants to establish a static semantic or not.  There are 
basically three approaches how one can write π-programs:

Scenario I — "bad π" The most "dangerous" use of 
pattern-declarations is to introduce new syntax and seman-
tics based on unpredictable user inputs or randomness:
declare_pattern new_pattern ≔
   "#"+read(character_string)
   ⇒ integer ➞ random_integer();

In this case, the meaning of a possibly following 
instruction-symbol like, for instance, print(#abc) is not 
at all predictable.

Scenario II — "better π" Even if the language provides 
the most freedom, a good programmer will put restrictions 
on herself/himself: she/he would abstain from using that 
kind of pattern-declarations. Yet, there are still problematic 
cases, namely conditional pattern declarations,  i.e., 
pattern-declarations whose execution depends on dynamic 
properties of the program:
if (i > 5)
{
   pattern signum ≔ "sign" "(" integer ")"

      ⇒ integer ➞ r > 0 ? 1 : (r < 0 ? -1 : 0);

}

print ( sign (i) );

In this case, the instruction-symbol print(sign(i)) 
is only interpretable if the variable "i" is greater than five.

Scenario III — "good π" Thus, an even better pro-
grammer would also abstain from using conditional 
pattern-declarations.

She/he would declare patterns in libraries (π-code-files) 
which would be loaded at startup and would at best use 
local unconditional pattern declarations like,  e.g.,  in the 
following example:
pattern divisor ≔ integer:a "|" integer:b

   ⇒ boolean ➞ b % a = 0;

integer r = random_integer;

if ( 3|r )
{
   pattern signum ≔ "sign" "(" integer ")"

      ⇒ integer ➞ r > 0 ? 1 : (r < 0 ? -1 : 0);

   
   print ( sign (r) );
}

In this case,  the π-program has a static semantic as the 
set of active patterns at any point in the program is fully 
predictable: patterns in this scenario behave like ordinary 
functions with a possibly complex signature; after a "re-
naming" from pattern-syntax to function names and a flat-
tening of the parameter-tree, conventional static type-
checking would be applicable.

2.4. The Interpretation
Every sentence that is send to the interpreter,  i.e., every 
symbol in form of a sequence of characters, will be inter-
preted according to the current state of the interpreter. The 
state is completely determined by the set of currently active 
patterns (we call it the context of the interpreter): a symbol 
is accepted if it can be be recognized as the application of 
one or more of the currently active patterns,  all other sym-
bols are rejected as uninterpretable (meaningless). The in-
terpreter accepts only instruction-symbols (short: instruc-



tions). All other symbols are rejected as inappropriate sen-
tences.

2.4..1 Dispatch
In general,  there are two cases when an input-symbol 
matches more than one pattern, i.e.,  the parse-tree is am-
biguous: in the first case, the parse trees contains only pat-
terns which are partially homonymous, i.e., basically have 
the same syntax but differ in the types of the slots. In this 
case, the dispatcher performs the selection by considering 
the sequence of slots as members of a lattice and decides 
according to the order defined on the lattice; this is the 
most widespread variant of realizing symmetrical multi-
dispatch.

Since this is a partial order, only in the case that one 
interpretation of the input is more specific in every slot,  this 
variant is selected, else the input is rejected by stating an 
ambiguity. In the second case, when the parse-trees differ in 
other ways than just being partially homonymous patterns, 
the input is rejected as syntactically ambiguous which is an 
indication for poor pattern-design.

2.4..2 The Evaluation

The evaluation of a symbol in π means evaluating the 
meaning of the corresponding pattern. The meaning is 
looked up in the pattern-list of the interpreter. The actual 
purpose of a meaning is twofold: either the meaning-
symbol causes side-effects or it does not; either it does 
calculate/create a resulting symbol (short: result) or it does 
not.

If the pattern is predefined, then its predefined meaning 
is realized, i.e., the respective side effects, for instance, 
printing on the console, take place. If the pattern is user-
defined, then the interpreter will interpret the associated 
user-defined meaning-symbol which in turn uses other 
user-defined and predefined symbols.

The resulting symbol of a symbol is the result of the 
rewriting of the respective symbol taking place during the 
evaluation; for instance, the integer-sum symbols do re-
write themselves to the integer symbol that is considered to 
be the "sum" of these two integers. A result is then inserted 
into the slots of other symbols in the further process of 
evaluation.

The way this result is created can be different: the 
"functional" way would be to "directly" evaluate other 
symbols in order to come to a result; the "algorithmic" 
("imperative") way would be to describe a process which is 
creating the result. As already mentioned, in π, there is no 
difference between these approaches as "imperative" pat-
terns are evaluated in exactly the same way as "functional" 
patterns are,  by causing side-effects and creating a resulting 
symbol.

Patterns that do not explicitly calculate a resulting sym-
bol, implicitly are rewritten to the null-symbol (we use the 
Unicode no-character glyph: ␢).
π basically cannot have a strict evaluation strategy as 

conditional instruction patterns, e.g., the if-then-else pat-

tern, depend on the possibility to not evaluate/execute 
parameters. Consequently, π supports lazy evaluation in the 
form of explicit evaluation (call-by-name) and implicit 
evaluation (call-by-need) which together are equivalent to 
leaving the decision on the concrete evaluation of the pa-
rameters up to the programmer instead of enforcing a stan-
dard evaluation strategy.

The predefined evaluate-reference(-pattern) (in the 
CPS) provides a mean to explicitly evaluate parameters:
evaluate ≔ "evaluate" "(" reference ")"

   ⇒ reference

It would be used in pattern-declarations as follows:
unless ≔
   "unless" "(" expression ")" instruction
   ⇒ instruction ➞
   if (!expression) evaluate(instruction);

The expression-parameter of the unless-pattern is not 
explicitly evaluated but implicitly: whenever a reference to 
a parameter is used without the evaluation-pattern then the 
evaluation will take place implicitly. In this case,  π uses the 
call-by-need strategy: once evaluated the results of the pa-
rameters are buffered in order to prevent multiple, possibly 
time-intensive re-evaluations of the parameters. The 
following example uses only the implicit evaluation vari-
ant:
integer_potentiation ≔
   integer:i "^" integer:j
   ⇒ integer ➞
{
   int result = i;
   
   for (int k = 1; k <= j-1; k++)
      result *= i;
   
   return result;
}

2.5. The Core Pattern Set
"If I want to help other persons to write all sorts of programs, 
should I design a small  programming language or a large one? 
[...] I should not design a small language, and I should not 
design a large one. I need to design a language that can grow. I 
need to plan ways in which it might grow – but I need, too, to 
leave some choices so that other persons can make those choices 
at a later time." — Guy Steele

We have seen already a lot of the patterns built into the core 
pattern set. π is a semantically and syntactically minimal 
language because like the λ-calculus' abstraction and appli-
cation constructs, π would as well need only these two lan-
guage constructs (predefined core patterns), only the ab-
straction would have to be extended by a possibility to de-
fine new parametrized symbols – i.e. the abstraction would 
be the pattern-declaration-pattern – and the application 



would then interpret symbols in the context of these pat-
terns.
However, as the focus of this article is to describe a pattern-
language as such and not its minimality in particular,  we do 
not argue or even prove the necessity of patterns to include 
in the CPS or not. We therefore did define the CPS in an 
informal way by choosing the syntax and the semantics that 
most programmers are familiar with from other program-
ming languages (LISP- or Pascal-style syntax could be 
added to π, too). There is not the one core pattern set. Sev-
eral sets of core patterns would be adequate for a realiza-
tion of the π-language since patterns can be defined on top 
of other patterns; the only absolutely unavoidable pattern is 
some pattern-declaration-pattern. The CPS should be inter-
preted rather as a proposal and an outline, mainly used for 
the definition of the patterns in the evaluation of this work, 
than as a fix definition. We provide some examples of the 
categories the patterns in the CPS are grouped by.

Declaration (Meta-)Patterns  Considering the remarks 
made so far, it is not an exaggeration to say that the whole 
concept of π is based on two patterns,  the pattern-pattern 
and the pattern-declaration pattern – which exactly reflect 
the philosophy of π:
pattern ≔
   name "≔" syntax "⇒" type "➞" meaning ⇒ data

pattern_declaration ≔
   "declare_pattern" pattern

   ⇒ instruction

Mathematical Operator Patterns  The most common 
mathematical operators are predefined in infix notation 
both for integers and floats and the combinations of them:
integer_multiplication ≔

   integer:a ("*" | "·") integer:b ⇒ integer

Logical Patterns The basic logical conjunctions are pre-
defined, as well with mathematical notation:
logical_and ≔
   boolean:a ("∧" | "and" | "&") boolean:b
   ⇒ logical_operator

logical_operator ⇒ boolean

Symbol Manipulation Patterns Patterns used for manipu-
lating symbols,  i.e. in π, sequences of characters, play a 
crucial role in π as symbols can be seen as the "instances" 
of patterns. 

The whole language is based on the principle of symbol 
manipulation, or being more precisely,  every programming 
language is based on that principle,  π just doesn't hide its 
evidence.

For instance, character-string concatenation can be done 
either by the "+"-operator or by a reduced space:
character_string_concatenation ≔
   character_string:a (%S- | "+")
   character_string:b ⇒ character_string

character_in_string ≔
   "(" positive_integer ")" "th_character_of"
   "(" character_string ")"

   ⇒ character

The properties of a pattern can be changed by the prede-
fined rewrite pattern. The following application of the re-
write pattern, for instance, changes the syntax of the print 
pattern; it actually performs a sort of renaming:
rewrite (print.syntax, "write" "(" symbol ")");

Control-Flow Patterns  π provides several typical 
control-flow patterns, among them, for instance, the if-
then-else pattern:
if_then_else ≔
   "if" "(" expression ")" instruction
   [ "else" instruction:else ]
   ⇒ control_flow_pattern

Data Patterns The typical data-patterns like integer, float 
or boolean are predefined in π:
boolean ≔
   "true" | "false"
   ⇒ data

All other more complex data patterns like lists, matri-
ces, maps and tables can then be defined on top of these 
basic data patterns.

Ontological (Meta-)Patterns  Type hierarchies can be 
seen as ontologies having a type-entity and a subtype-
relation.  Consequently, all patterns, including, e.g., instruc-
tion patterns, can be classified by their type:
integer_unequality_comparison ≔
   integer:a ("≠" | "!=") integer:b
   ⇒ comparison_operator

comparison_operator ⇒ boolean_operator

The is-operator pattern can be used to find out if a pat-
tern is a sub-pattern of another pattern:
is ≔ type "is" type

   ⇒ boolean_operator

The top-pattern of the ontology in π is the symbol-
pattern. It has two immediate children: the instruction pat-
tern and the expression pattern. Patterns having side-effects 
and control-flow patterns should be defined as instructions; 
patterns calculating a resulting symbol and data patterns 
should be defined as expressions.



Communication Patterns (I/O-Patterns) In the world of 
π, there is nothing but symbols and patterns. So, the com-
munication mechanism will comprise the standard means to 
emit and receive symbols:
print ≔ "print" "(" symbol ")" ⇒ instruction

(World-)Knowledge-Patterns  The world surrounding a 
system does contain a lot of information and knowledge 
that is in most cases relevant to the system. Among these 
"world"-patterns are those that define the current date, time 
and location of the system:
current_date ≔ "current_date" ⇒ date

Context (Meta-)Patterns We have used references to de-
fine the meaning of patterns. References, in π, like every-
thing else (reflection-completeness), are predefined pat-
terns:
explicit_reference ≔
   name [ "[" integer:index "]" ]
   [ "." reference ]

Interpreter (Reflective) (Meta-)Patterns We have already 
mentioned some of the patterns demanded by the principle 
of reflection completeness in the section on reflection. 
Other patterns in the same context are, for example:
parse_instruction ≔
   "parse" "(" symbol ")"

   ⇒ parsed_symbol

A parse-tree is encoded by the parsed-symbol pattern: a 
parse-tree could be seen as the original input symbol with 
(a lot of) additional information, especially the linkage be-
tween the read characters and the patterns they belong to. 
The interpret-pattern is a user-defined pattern:
interpret ≔

   "interpret" "(" symbol ")" ⇒ symbol
   ➞ evaluate ( parse ( symbol ) )

3. Implementation
We now describe an implementation of the π-language. We 
emphasize once more the strict separation of the (semantics 
of the) π-language and the implementation of an interpreter 
for this language. The π-language does explicitly not in-
clude any technical features of any underlying system, for 
instance, something like a processor-ticks pattern or 
memory-management patterns; actually, it is a pure symbol 
manipulation mechanism.

Our interpreter is completely implemented in Java 6. Of 
course, the central and most important element of the im-
plementation of a syntactically extensible language is the 
parser. For our purpose,  we re-discovered a type of parsers 
which were used since the 70s almost exclusively in com-
putational linguistics but not in programming: the chart 
parsers.

3.1. The Parser
Our parser is based on the modified Earley-parsing algo-
rithm [2] with several little additional improvements from 
our side.  The Earley-parser has three main advantages in 
the context of using it for a pattern language:

• It updates relatively fast on a change of the grammar 
rules while still having acceptable parsing speed; this 
is crucial for a syntactically extensible language.

• Secondly,  it can parse any context free grammar; 
therefore programmers do not have to modify their 
pattern syntax in order to comply with the require-
ments of a specific grammar, as, e.g.,  the restriction to 
LL-grammars concerning ANTLR.

• Thirdly, the Earley-parser returns all possible readings 
of an input sentence; thus, the dispatcher can then de-
cide in a later stage which reading is the one in the 
respective context (see the following section).

The algorithm has a complexity of O(n3) concerning the 
length of the input (O(n) in case of a LR(k)-grammar). 
However, a complete description of the algorithm is by far 
beyond the scope of this article.

We have furthermore developed an "Earley-parser gen-
erator", i.e.,  a small framework to instantiate a clean 
Earley-parser with predefined rules (the ones for the prede-
fined patterns) written in EBNF.

3.2. Dispatch
In case that an input-symbol is homonymous, i.e.,  the 
parser returns several parse trees, the parse trees are com-
pared then if they are just partially homonymous or differ 
in other more complex ways. In the latter case, as described 
in the section 2.4.1, the input is rejected. In the former case, 
the type-distance of all sub-symbols to the slots is calcu-
lated from the parse tree and they are compared pairwise as 
if in a lattice. 

3.3. Evaluation
In a bootstrapping-process the predefined patterns are 
loaded in several steps, considering the dependencies be-
tween them as some predefined patterns are already based 
on other more basic predefined patterns, e.g.,  the prede-
fined integer-sum pattern uses the integer pattern which in 
turn uses the digit pattern.  The evaluation of predefined 
patterns is straightforward: the meaning of these patterns is 
defined by pure Java-code which is then executed. The 
evaluation of user-defined-patterns, on the other hand, is 
realized by evaluating the meaning-symbol of the respec-
tive pattern.

For example, the meaning of the following pattern is 
evaluated by evaluating the integer-multiplication symbol:
square ≔ integer:i "^2"

  ⇒ integer ➞ i * i

Of course, as π is semantically grounded, every evalua-
tion of a user-defined pattern will end up in the evaluation 



of predefined patterns. In both cases, the evaluation of 
predefined and of user-defined patterns, the parse-tree of 
the symbol to evaluate is provided as a context for the re-
solving of the parameter references. For instance, the input-
symbol 3^2 would result in the following parse-tree pro-
vided to the square pattern (we use an XML-style pretty-
print for the parse trees):
<square-symbol>
   <integer-symbol name="i">
      <non-zero-digit name="first_digit"
       literal="3">
   </integer-symbol>
   <literal="^">
   <literal="2">
</square-symbol>

The reference "i" could now be resolved by looking it 
up in the parse-tree. π provides dynamic type checking as 
the resulting symbols of all patterns are checked if they 
match the indicated type; for example,  the π-interpreter 
would try to parse the result of the square-pattern as an 
integer symbol. If this failed, the interpreter would throw a 
type error.

3.4. Implementation Status

The current implementation of the π-interpreter has some 
minor restrictions in implementing the π-language. These 
are as follows:

• In the current implementation the reference pattern 
differs slightly from the way as described here; all 
references start with a "$". The usage of an ordinary 
name pattern causes the Earley-parser to generate too 
many possible results, which could easily be sorted out 
at a later stage, but the sheer creation of these results 
temporarily consumes too much memory; presently, 
we think about working directly on the parse-chart in 
order to tackle that issue.

• Nested pattern declarations as described in section 
2.3.1 ("Type Safety and Static Semantic") are cur-
rently disabled since the parser would as well take too 
many resources to process these (anyway deprecated) 
constructions; however, we think about introducing a 
kind of lazy parsing, i.e. a multi-stage-parsing which 
would then be controlled directly by the π-language, 
respectively by the programmer.

4. Evaluation
"It is good to design a thing, but it can be far better (and far 
harder) to design a pattern. Best of all is to know when to use a 
pattern." — Christopher Alexander

We evaluate the expressivity of π by revisiting several con-
cepts of current programming languages, at the same time 
shedding light on these concepts from a π perspective. The 
evaluation is structured along the level of abstraction the 
analyzed patterns have, starting from simple notation-
definition and ending with full programming languages 
realized in π.  We limit our set of examples here to a few 

representative ones from each category. The interested 
reader can find more on our website (pi-programming.org).

4.1. Use-Case I: Language Constructs
"My point is that a good programmer in these times does not 
just write programs. A good programmer builds a working vo-
cabulary. In other words, a good programmer does language 
design, though not from scratch, but by building on the frame of 
a base language." — Guy Steele

Language constructs are usually introduced by version 
changes of programming languages as, for example,  the 
for-each loop and variadic methods came to Java; or they 
are introduced by completely new languages, as, e.g.,  clo-
sures came with LISP. In π, new language constructs are 
introduced by new patterns built on top of the core lan-
guage, including expressions, instructions and data pat-
terns.

4.1..1 Expression Patterns
Most contemporary programming languages lack of con-
venient notation for specific problem domains, for instance, 
for mathematical or technical notations. Newer languages 
such as Fortress [19] address this issue.

The definition of symbolic aliases for functions are a 
major motivation for syntactic extension (see the related 
work). In π, for instance, a square-root-pattern could be 
defined as follows:
"√" %W- number ⇒ float
   ➞ square_root (number)

The square-root symbol could be used then in expres-
sions ("ℕ" is predefined as a synonym for the positive-
integer pattern):

if (n ∈ ℕ ∧ n ≥ 0) return √n;

Another example: in a lot of programming languages, 
ordered sequences of numbers have to be expressed in the 
following bloated way:
(i >= 10) && (i <= 20) && (j > 20) && (j < 40)

With the help of a user-defined operator-chain pattern 
the same expression can be written in the following intui-
tive way:
10 ≤ i ≤ 20 < j < 40

4.1..2 Control Structure Patterns
Control structures such as loops can be defined as patterns:
control_structure ⇒ instruction

loop ⇒ control_structure

The most basic of all loop-constructs is the one that 
performs a given action a fix number of times:



do { print ("hello!"); } (10) times

The corresponding pattern looks as follows (the execute  
pattern is a synonym for the evaluate pattern):
do_times_loop ≔
   "do" instruction "(" integer:times ")" "times"

   ⇒ loop ➞
{
   for (int i = 1; i ≤ times; i++)
      execute (instruction);
}

4.2. Use-Case II: Meta-Constructs

"Meta means that you step back from your own place. What 
you used to do is now what you see. What you were is now 
what you act on. Verbs turn to nouns. What you used to think 
of as a pattern is now treated as a thing to put in the slot of an 
other pattern. A meta foo is a foo in whose slots you can put 
foos." — Guy Steele

With the term "meta-construct", respectively meta-pattern, 
we denote constructs whose main purpose is in defining 
other patterns or helping with that. Every semantically ex-
tensible programming language must have concepts for 
defining the entities of the language. In the case of Java, for 
instance, these are, among others, class- and method-
declarations. By now, in π we have seen only one construct 
to define other patterns: the pattern-declaration pattern. 
Many other constructs could be defined on top of that. 

We can define alternative – possibly reduced – notations 
for repeating pattern declarations, e.g.,  for the declaration 
of "functions" in π:

declaration ⇒ instruction

Functions – being so to speak the first real abstraction 
in programming – are an ever occurring pattern in pro-
gramming borrowed from mathematics. This kind of ab-
straction can be defined in π, as well, in the following in 
the widespread C-style (we use the "»" and "«" as quotation 
marks (CPS) so that the upper quotation character can be 
used in a readable form within the declaration-string):
function_declaration ⇒ declaration

variable_name ⇒ name

c_style_function_declaration ≔
   type name
   "("(type variable_name):first
      {"," type variable_name}:parameters ")"
   block:meaning
   ⇒ function_declaration ➞
{
   character_string pattern_string =
      »"« + name + »" "("«;
   
   if (present (first))
      pattern_string += slot(first.type) +

         ‶":"″ first.variable_name;
   
   if present (parameters)
      for (int p=0; p≤size_of(parameter)-1; p++)

         pattern_string += ‶","″ +
            slot(parameters[p].type) +
            ‶":"″ parameters[p].variable_name;

   pattern_string += ‶")"″ "⇒" type "➞" meaning;

   declare_pattern (pattern)pattern_string ;
}

Outgoing from the function-declaration, a pattern-
declaration instruction is assembled on a string-basis.  This 
looks similar to "macro"-programming; however,  in π, 
there is no "macro-expansion" but just the usual evaluation 
of patterns: the assembled declaration string will be parsed 
as such and immediately executed.

We can now express the simple max-operator pattern 
we have previously defined in a more convenient way 
("int" is defined as another synonym for "integer"):
int max(int a, int b)
{
   return a > b ? a : b;
}

4.3. Use-Case III: Libraries and Frameworks

In π,  a library or a framework – we use these terms here 
synonymously as both are extensible – is a considerable set 
of interacting patterns serving a common purpose, i.e., a 
domain specific language. The advantage of π in library 
design is that the syntax of the entities in the library can be 
developed according to the purpose of the library,  for ex-
ample, in the domains of logging, error-handling,  test-
driven-development,  software metrics, GUI-design, web-
development or data-access.

A direct embedding of SQL-instructions would be very 
beneficial in a programming language as a lot of applica-
tions require persistency. We exemplary define here the sql-
command "insert" assuming that the connection to the da-
tabase is realized by a pattern send_sql_command(data-
base, sql_command) and that the patterns "sql-value", 
"sql-column-name" and "sql-table-name" are already de-
fined (the check-pattern stops the execution in case of an 
error; the this pattern is a reference pattern referencing the 
symbol itself, in this case, the whole sql-insert-statement):
sql_instruction ⇒ instruction



sql_insert_statement ≔
   "INSERT" "INTO" sql_table_name
   "(" sql_column_name
      {"," sql_column_name}:column_names
   ")" "VALUES" "("
      sql_value {"," sql_value):values
   ")" ";"
   ⇒ sql_instruction
   ➞
{
   check (size_of(column_names) = size_of(values),
      "Wrong number of values!");
   
   send_sql_command (current_database(), this);
}

If all CRUD-sql-commands were defined, we would be 
able to seamlessly integrate sql with π:
INSERT INTO people VALUES ("Alfred", "Wissel"),
   ("Julika", "Häuser");

for_each_in (SELECT * FROM people)
   print (current.forename);

UPDATE people SET surname = "Häuser"
   WHERE forename = "Alfred" AND surname = 
"Wissel";

DELETE FROM people WHERE (forename ="Alfred");

The fact that sql-commands are elements of the lan-
guage might help to reduce problems concerning sql-
injection-attacks, too, as incoming character-strings denot-
ing sql-commands can be parsed already as specific sql-
command instead of generally interpreting the – possibly 
harmfully modified – commands.

4.4. Use-Case IV: Full Languages

"A language design can no longer be a thing. It must be a pat-
tern – a pattern for growth – a pattern for growing the pattern 
for defining the patterns that programmers can use for their real 
work and their main goal." — Guy Steele

In π, the anyhow hard to define difference between a "lan-
guage" and a "library" vanishes completely. Usually, 
"languages", in contrast to "libraries", define syntax in ad-
dition to the semantics they come with. As in π every li-
brary defines syntax, as well, every library is a language.

As a proof of concept of the expressiveness of π we 
define the λ-calculus in a straight-forward way, both se-
mantically and syntactically. As mentioned before, the λ-
calculus and π have a lot in common: the former is a se-
mantically minimal programming language and π is a se-
mantically and syntactically minimal programming lan-
guage.

λ_calculus ⇒ language

The λ-calculus has three types of expressions:
λ_expression ≔ 

   λ_variable |
   λ_abstraction |
   λ_application
   ⇒ λ_calculus

A λ-variable is represented by a lowercase-name:

λ_variable ≔ ⁅lowercase_letter⁆

The abstraction and the application look as follows:
v is a λ_variable;
e, e1 and e2 are λ_expressions;

λ_abstraction: (λv.e);

λ_application: (e1 e2) ≔
   { e1 is λ_abstraction :
       β_reduction(e1.expression, e1.variable, 
e2),
     otherwise : this;

The above description is the original code-fragment in π 
which defines the λ-calculus by making use of a 
naturalistic-slot-definition pattern ("x, y and z are v") and a 
programming-by-example-definition pattern ("name: ex-
pression"). In addition to that, a case-pattern (user-defined) 
and a this-reference (CPS) are used. The complete imple-
mentation of the β-reduction-function can be found on our 
website.

Considering all properties of a pattern-language, we see 
a closer relation of π to languages like Scheme or Haskell. 
However, object-oriented languages can also be modeled 
with π. We currently work on a (prototypic) language in-
corporating some of the very basic features of Java, called 
πicoJava; more information can be found on our website.

4.5. Use-Case V: Meta-Languages
"In a way, a language design of the old school is a pattern for 
programs. But now we need to “go meta.” We should now 
think of a language design as a pattern for language designs, a 
tool for making more tools of  the same kind." — Guy Steele

The concept of patterns allows to interpret languages as 
sets of patterns. That way, with a language workbench, new 
languages could be created by composing features (occur-
ring in different other languages). Languages, respectively 
language families,  could, as well, be designed in a generic 
way by either leaving parts of the syntax open for exchange 
or parts of the semantics, for instance, in case that different 
implementations of a language for different machines 
should be developed – for example, one implementation for 
a multi-core system and another one for a micro-computer.

Languages could inherit from each other by sharing a 
common set of patterns (e.g. C++ "extends" C), possibly 
with the same syntax but with rewritten pattern-semantics. 
In this context,  a whole language can be seen as a para-
metrized pattern. π could be used as a super-language for 
(some) of current programming languages and as a hyper-
language in the sense of being a super-language with the 
additional capability to be syntactically extensible.

In this context, a pattern language behaves not only like 
a parser-generator but like a whole integrated language 
generator. Product line management could become a part 
of the language itself rather than being an outside mecha-
nism.



5. Related Ideas
The idea of a pattern language touches several fields of 
contemporary programming which are best captured by the 
term "language oriented programming". This term has been 
initially described in [32] by Martin Ward. It splits the de-
velopment process in three stages: the design of a problem 
oriented very high level programming language, the im-
plementation of the system with this language and finally 
the implementation of a compiler for this language. This 
process should be performed recursively. Ward calls lan-
guage oriented programming "middle out development" in 
contrast to top down or bottom up development and their 
combination in outside in development. Völter [31] adds 
interesting motivation for language driven development 
from a practical point of view.

In general, two movements can be noticed: the "old" 
movement in the 60s focussed mainly on macros as a mean 
of syntactic extension, the new movement, starting in this 
century is driven by DSLs, by providing extension tools for 
"big" languages like Java, and the desire for composing 
several languages in one,  thereby creating a superlanguage 
(the term "superlanguage" was coined by Christopher Dig-
gins [16]). Finally,  term rewriting calculi and adaptive 
grammars, standing a bit aside,  are more formal approaches 
to the same goal.

However, none of the works – even the closest ones 
about Katahdin [23] and XMF [22] sticking very strong to 
the object-oriented paradigm – draw the attention on per-
ceiving programming itself as a process of designing and 
using patterns. π is a new language whose goal is not ex-
tension but which is built exclusively on the principle of 
patterns – realizing all features of a pure pattern language. 
π is post-paradigmatic in the sense that it does not favor 
any special programming paradigm (except for "pattern 
oriented programming" if itself interpreted as a paradigm). 
Only syntactic homogeneity and sometimes full reflectivity 
seem to be a widely accepted goals in the related work.

5.1. Syntactically Extensible Languages
Other used terms used in this field are grammar-oriented 
programming or syntax-directed languages.  This kind of 
programming languages is closest related to the concept of 
a pattern language as the goal of XMF [22] is: "An ideal-
ized superlanguage provides control over all aspects of 
representation and execution. A superlanguage can be ex-
tended with new features that make it easy to represent 
concepts from the application that a customer would under-
stand. [...] Each new feature that is added to a superlan-
guage has a description of how it should execute and how it 
integrates with other features.".

Katahdin [23] is an object-oriented imperative (super-
)language; it is designed especially for the aspect of com-
bining several programming languages in one. Katahdin, 
like π, supports the definition of syntax and semantics to-
gether as one unit. It hereby realizes the core of a pure pat-
tern language, however,  it is still attached completely to the 
object-oriented paradigm. Neither does it provide full re-

flectivity or meta-completeness. Despite that, the work on 
Katahdin is among the most interesting works in this field 
and the closest relative of a pattern-language.

XMF [22] is a syntactically extensible object-oriented 
language. XMF focusses very strong on the aspect of being 
a superlanguage for the use in multi-language projects. [15] 
describes how to syntactically extend Java on the basis of 
XMF. We find it disadvantageous that XMF forces the pro-
grammer to separately define syntax and semantics: syntax 
is defined in the Grammar-construct and semantics is im-
plemented in a method "desugar" with a class implement-
ing a "Performable"-element. Nevertheless,  XMF is one of 
the most advanced approaches in the field of syntactically 
extensible languages.

Logix [25] – currently in alpha stadium – and the eX-
tensible Language (XL) [35] allow for the definition of 
user-defined syntax for operators (XL allows for a basic 
nesting by predefined "block"-symbols,  too).  Proof assis-
tant systems like Isabelle [20] allow as well for syntactic 
extensions on the operator-level.

5.2. Language Design Tools
In contrast to syntactically extensible languages,  tools for 
language design, mainly aim at extending existing 
languages with new syntax. They divide in two groups: 
general purpose compiler-compilers provide a framework 
for the design of new languages, possibly with an already 
written implementation of a widespread language like Java; 
extension tools / facilities on the other hand aim at extend-
ing a specific existing programming language. Both ap-
proaches can be used in the context of domain specific 
modeling. In a pattern language, there is no inherent differ-
ence between a library or a DSL as both syntax and seman-
tics are defined in a library. A pattern language shares as 
well a common goal with model-driven development: both 
aim at giving the programmer a powerful abstraction 
mechanism; however, the way, this is realized is very dif-
ferent: whereas model driven development advocated on 
creating a hierarchy of ever more abstract (graphical) mod-
eling languages, a pattern-language strives for meta-
completeness and primarily keeps to textual modeling.

5.2..1 Extension Tools / Facilities
The Java Syntactic Extender (JSE) as described by 
Bachrach and Playford in [3] is a macro-facility for the 
Java language. Code used in macros is quoted with a spe-
cial syntax of an opening "#{"-bracket and closing 
"}"-bracket. References to code-fragments to be inserted 
are then done by the identifier of the respective fragment 
preceded by a question mark. Code fragments are then 
evaluated in a multi-staged way. JSE provides only a lim-
ited syntax extension mechanism, for instance, it allows to 
extend only a bunch of surface syntactic nodes of Java. 
This is intended because the system focusses on the Java 
language and therefore considers a lot of usability issues.

In [9] on MetaBorg / Stratego Bravenboer and Visser 
describe how Java can be extended by domain specific 
languages. They provide examples for direct XML repre-



sentation and a GUI-language which are realized by a 
macro-like-rewriting of Java-code to Java-code. MetaBorg 
aims at bringing the concepts of APIs to programming 
languages.

Ometa/CLOS [33] is an object-oriented language for 
pattern matching and is similar to executable grammars like 
newspeak [8] – which is a general purpose language sup-
porting the expression of parser combinators. Like [1] it is 
based on a parsing expression grammar (PEG) [18].  This is 
a relatively new grammar formalism which is similar to 
context-free grammars but supports syntax predicated and 
enforces – by rule prioritizing –  a unique parsing result. 
We do not use a PEG as an ordering of patterns is not in-
tended in our concept of a pattern language, all patterns are 
"equal" by default. Besides the higher expressivity of 
PEGs, the programmer has to take care of a lot of the syn-
tactic details of the rules in a skillful way in order to guar-
antee the correct ordering of the rules.

[1] is the most recent work in the field and describes the 
introduction of macros to Fortress [19]. This work has a lot 
in common with Katahdin [23] and XMF [15]. As this work 
concentrates on the extension of an existing language rather 
than the definition of a new language it explicitly strives for 
syntactic homogeneity but does not aim at reflection- nor 
meta-completeness. However, the work describes an inter-
esting approach of how to organize "grammars" in modules 
which may (multi-)inherit from each other.

5.2..2 Compiler Compilers
The Jakarta Tools Suite (JTS) [5] aims at creating domain-
specific languages for existing programming languages. 
JTS consists of the tools "Jak" and "Bali". The former is a 
meta-programming extension for Java,  the latter a tool for 
composing grammars.

JastAdd [21] is a compiler compiler based on aspect-
oriented modules. JastAdd supports as well a rewriting of 
the AST for integrating new syntax into the language. The 
JastAdd Extensible Java Compiler [17] is a full implemen-
tation of Java in the JastAdd-framework.

Theoretically, every parser is syntactically extendable, it 
just has to be regenerated every time the grammar changes. 
In practice, for most predictive parsers, for instance the 
LL(k)-parsers generated by ANTLR, this is not realizable; 
they parse very fast though but take a long time for the 
generation of the automaton. "Rats!" [26] is a parser gen-
erator for Java which integrates, like the π-parser, lexing 
with parsing. It uses a parsing expression grammar.

5.3. Metaprogramming
"Metaprogramming" is a very extensively used term as it 
comprises macro-facilities, generative programming, multi-
stage-programming, generic programming and meta-object-
protocol implementations. We focus here on macro and 
multi-stage-programming as generic programming is 
widely known.

5.3..1 Macro Facilities
The term "macro" is used in various ways, as well. It 
mainly refers to textual macro-processors like the C-
preprocessors or TeX or the syntactic macro-processors like 
the macro-facilities of LISP, Scheme or Dylan [4].  One of 
the earliest works on macros was [13] by T. E. Cheatham in 
1966. Brabrand and Schwartzbach [7] give an excellent 
survey on macro languages comparing eight representative 
systems using 32 properties.
π is neither a lexical macro processor as it does not operate 
on a purely textual basis nor is it a syntactic macro proces-
sor since there is no "pre-evaluation"-phase or "macro ex-
pansion phase" as it is called concerning LISP. From the 
point of view of π, a "macro expansion" is like any other 
evaluation. π does not make a difference between "normal" 
data types and data which represents evaluateable code: 
every symbol is evaluateable.

However, conceptually, π has a lot in common with 
LISP: both are minimal languages, concerning syntax and 
semantics and concerning its main concepts: lists and pat-
terns; actually, original LISP uses trees, lists are a special 
data-structure defined on trees, π, too, uses trees, namely, 
syntax-trees; both are homoiconic programming language, 
i.e. "code" is just a special form of data. π is a little bit like 
"LISP with syntax" but without a macro-expansion phase, 
therefore no problems concerning hygiene occur in π.

The metamorphic syntax macros [7] are designed to 
extend the syntax of a host-language, in the paper "<big-
wig>" [6], an interactive-web-service-language. Brabrand 
and Schwartzbach make a difference between normal kind 
of macros and metamorphic macros (hence the name): the 
latter differ in that way from the former that they can be 
used in the definition of other macros. In the program, the 
macros are identified by their identifier. Ambiguities are 
resolved, among other strategies, by declaring greedy pars-
ing as the standard parsing rule.

5.3..2 Multi-Stage Programming
MetaML [27] is a multi-stage programming language. 
MetaML supports "higher-stage expressions" where the 
stage of any piece of code is determined by the number of 
surrounding brackets. This way,  code can be treated as 
usual data, created and executed in a later stage. A pattern 
language is only multi-stage in the sense that assembled 
symbols can be reinterpreted as instructions an then be im-
mediately evaluated. However, the evaluation of whole 
code-pieces cannot be delayed to a later stage. MetaOCaml 
[28, 29] is another example of multi-stage programming.



5.4. Term Rewriting Calculi
The "recursive functions algorithmic language" (REFAL) 
described in [30] by Valentin Turchin is a functional pro-
gramming language that directly implements term rewriting 
mechanisms by providing two basic mechanisms: pattern 
matching and substitution. In general, a Refal program con-
sists of functions in arbitrary order (the starting function is 
marked with the keyword $ENTRY), which in turn consist 
of sentences. A sentence is the combination of a pattern and 
an expression, which will be returned as the function result 
if the pattern matches.  So, a Refal function can be com-
pared to a set of π-patterns. In addition to that, π is related 
to Refal insofar that the core principle of both languages is 
pattern matching; however, Refal does not aim at syntactic 
extensibility.

5.5. Adaptive Grammars
Adaptive grammars – also called modifiable,  extensible, 
dynamic or adaptable grammars or dynamic syntax – are a 
formalisms based on the common grammar formalism but 
with the extension of dynamism: there are grammar rules 
that can change the rule set of the grammar during "pars-
ing". This way, adaptive grammars even become turing-
complete programming languages. Originally, adaptive 
grammars, were invented very early in 1963, see [12], af-
terwards reinvented several times. [14] gives a very good 
overview on these works.

The Universal Syntax and Semantics Analyzer (USSA) 
as described in [11] is a formalism and a parser and a more 
recent work in this field. The approach is based on a 
bottom-up modifiable grammar as described in [10]. In 
USSA, rules are declared in YACC-style and are organized 
in "clusters". A cluster is basically a set of rules which are 
then – at invocation of the cluster – added or removed from 
the set of current rules. Clusters can be used to define 
whole languages. In contrast to π, the semantics of USSA 
patterns is scattered within those patterns. It is hard to de-
clare patterns in a consistent way since potential (syntactic) 
sub-patterns have to implement semantics,  as well. Sub-
patterns then communicate with their super-patterns by 
global attributes. The USSA stays very technical instead of 
exhibiting more the idea of patterns.

6. Future Work

Parser Performance The mentioned restrictions in the 
current implementation have to be relaxed and the perform-
ance of the parser should be addressed – in general, we see 
a great potential for optimizations here. Other parser and 
grammar formalisms should also be considered concerning 
their usefulness and applicability in the context of a pattern 
language.

Integration There are several ways of how π could inte-
grate with existing languages: as a super-language, as a 
domain specific language for the definition of pattern 
within these languages or by directly importing source-files 
of these languages into the (Java-)π-interpreter.

Debugging Pattern languages require a special treatment 
of exceptions and errors because the parser has much more 
importance in a pattern language; however, it often does not 
provide sufficient information.  So, there should be ways to 
generate useful hints from this side.

Text-Formatting In order to realize the full potential of a 
pattern language, IDEs should have an integrated support 
for formatted text editing like current text processors and 
elaborated editors do. In addition to that, an appropriate 
corresponding markup file format has to be developed.

Pattern-Sharing  There should be a mechanism or a 
community platform to search, exchange and share pat-
terns. This has to be done in a slightly different way than 
current – neither optimal – sharing of source code because 
patterns can only be identified by their name as it is hard to 
query on the syntax. An open pattern library would maybe 
be organized in an ontological way, having patterns be 
tagged or provided with additional descriptions.

7. Résumé and Conclusion
"Well—there may be one other way, which is to use a large, 
rich programming language that has grown in the course of 
tens or hundreds of years, that has all  we need to say what we 
want to say, that we are taught as we grow up and take for 
granted. [...] But that is not where we are now. [...] I hope that 
we can, in this way or some other way, design a programming 
language where we don’t seem to spend most of our time talk-
ing and writing in words of  just one syllable." — Guy Steele

π fulfills all criteria of a pattern language: π is fully seman-
tically and syntactically extensible in a syntactically homo-
geneous way because there is no inherent difference in the 
application of predefined and user-defined patterns. With 
its minimal approach π is fully semantically grounded – as 
every evaluation of a user-defined patterns ends up in the 
evaluation of a predefined pattern – and reflection complete 
as all functionality of the interpreter is accessible from 
within the language.
π is as well meta-complete as the reflection language is 

identical with the core language and fully syntactically 
grounded as even the syntax of patterns is represented as 
syntax-patterns.

This makes π post-paradigmatic in the sense thatπ di-
rectly realizes the process of abstraction in a macro-like 
fashion: stop copy & paste or using IDE-source-templates. 
Instead, start with an example, parameterize it and give it a 
unique syntax and name.

7.1. Benefits of a Pattern-Language
We think that several fields of software engineering would 
be positively affected by such a pattern oriented design, i.e. 
(symbolic) abstraction as a whole as the major design prin-
ciple – thereby including other abstraction mechanisms, for 
example, functions:



Productivity / Expressibility / Intuitiveness In general, 
reducing code-redundancy by patterns for repeating tasks 
leads to a significant reduction of errors. As pattern-
language increases the possibility for abstraction, pro-
grammers are enabled to directly express their ideas with 
the syntax they want to use; thus,  much faster, direct and 
concise than without patterns. We think that this will com-
pensate the extra work to learn a new syntax.

Understandability  / Sustainability  / Evolvability Most 
systems are designed for a long evolutionary existence. A 
program written in a notation suitable for its domain of 
usage is easier to read, maintain, adapt and enhance.

Structuring  / Abstraction  / Modularizability  Patterns 
help in structuring the program or the problem domain; the 
declaration of a pattern is the manifestation of a new idea.

Learnabili ty  /  Presentabili ty  Pattern-language-
programmers would quickly learn the meaning of new fea-
tures as they are defined on the basis of the already existing 
features. Code can be written and read in the familiar way.

For instance, in real mathematical notation instead of 
more or less convenient ASCII-mappings (as in the lower 
variant):
f (x) = x2 + sin x - cos 2  ai

f(x) = x^2 + sin(x) - cos(2*a[i])

A pattern language could,  as well, help in teaching pro-
gramming languages theory to novice programmers as from 
the point of view of π programming languages can be re-
garded as a set of (changing) features.

Individuality  /  Freedom  Programmers want to have 
freedom. This is a social argument rather than a technical 
one. However, programming is a social action, too. Pro-
gramming is a form of expressing oneself in a creative act 
which is a great stimulus for general progress and personal 
satisfaction.  Every programming language makes a trade-
off between freedom and safety. π aims at providing as 
much of the former without completely sacrificing the lat-
ter. 

Progress With a pattern-language language design be-
comes a community-process increasing the general pro-
gress in language design as syntax is then exposed to evolu-
tionary mechanisms. From this evolution, not only a 
pattern-language could directly benefit but other program-
ming languages, too, by incorporating new constructs 
evolving in and from the pattern-languages.

7.2. Our Plea
This work wants as well to be understood  as advocating:

A Meta-Goal: a Renaissance of the Origins A pattern 
language might do a small contribution to what we would 
call the "renaissance of the origins": coming back to the 
roots and rethink some of the decisions made on the long 

way from the early days of programming to modern con-
temporary programming languages.  During this long time, 
a lot of concessions had to be made concerning the trade off 
between possible programming language features and tech-
nical feasibility. These should be remembered as what they 
are: temporary trade-offs and by no means necessities aris-
ing from the nature of things. Some of these decisions 
might not any longer be completely right, for example, the 
decision for languages with a closed syntax.

In addition to that, we would like to shed light on some 
too familiar ideas of contemporary programming like 
classes, methods, aspects, control structures and others, 
thereby following the essence of science: making familiar 
things unfamiliar. A more fundamental research might as 
well reveal possibly forgotten ideas of the past still waiting 
for their time to come; sometimes one has to step back in 
order to jump forward.

A Meta-Goal: the Democratization of Language Devel-
opment The extensions of languages are done in a half-
transparent process – in the sense that user-participation is 
mainly restricted to making requests but final decisions are 
made by a small group of people in a standards committee. 
With a pattern language every programmer could take part 
in extending the language by the constructs she / he has in 
mind.  The more restrictive a language / notation is,  the less 
freedom a language allows, the more it reduces our creativ-
ity since right from the beginning our thoughts are forced 
into the corset of this specific notation and the less room is 
left for progress. Syntactic extensibility could lead to an 
open marketplace for syntax where languages syntactically 
advance on need and constructs are in competition with 
each other concerning their usefulness instead of being 
introduced – or not – in an authoritarian way. In any case, 
there will automatically develop common idioms, as pro-
grammers have a natural interest in their programs being 
readable by others; this is the same process of competing 
exclusiveness and universality as it is happening with the 
individual natural language(s) each of us uses.

A Plea for the Focus on Language Design There seems 
to be a trend to compensate deficiencies in language design 
with ever more elaborated programming tools.  This "tool-
erism" has certain drawbacks: tools become out of date and 
incompatible with the language or with other tools. Pro-
grammers have to spend a lot of time to integrate the differ-
ent tools and keep them up-to-date. One of the most preva-
lent arguments of those advocating tools is a circular argu-
ment: new languages would be disadvantageous as they 
would not any longer be compatible with the existing tools! 
We plea for a language oriented design instead of rather 
than subservience to tools, good tools will follow good 
languages automatically, we don't have to worry about that.

In addition to that, we plea for meta-complete languages 
instead of "meta-ization" creating cascades of ever more 
meta-levels or languages. We think that the existence of 
several meta-levels is not a sign of quality but rather the 
opposite as it shows that each level seems to suffer from a 
lack of expressivity. We think that the creation of new, pure 



and consistently designed languages, making a tabula rasa 
should be preferred over overloading the languages cur-
rently en vogue until they finally go down with ever more 
features. This approach is not contradictory to a continuous 
evolution of languages: new languages – and new tools –
 derive from the experiences we have made with the former 
ones: "new" does not necessarily mean completely different 
but better.

A Plea for the Importance of Syntax In abstract pro-
gramming language theory one could up to a certain limit 
(the readability for the analyst himself) neglect syntax and 
concentrate on semantics only. However, this has nothing to 
do with programming reality and leads to the widespread 
underestimation of the importance of syntax which is re-
flected in subtleties such as the emotional preference pro-
grammers have for a syntax she / he is familiar with: pro-
grammers do not think in calculi but in symbols and they 
want to use symbols for real programs, especially these 
symbols they are already used to – why else would pro-
gramming languages syntactically refer so much to their 
predecessors, e.g. Java to C++/C? Why else would Micro-
soft provide their .NET-framework – one API, (semanti-
cally) one language – in different syntaxes? It is therefore 
the duty of software technology to provide programmers –
 especially those with customer contact – the tools they 
need to express themselves in the way they want to. Syntax 
does matter.

A Plea for more Risk and Dynamism π is a dynamic 
language. As the syntax is subject to dynamic modifica-
tions, it cannot be statically proven that a program is cor-
rect. Yet, dynamic programming languages have shown to 
be attractive for programmers. We are aware that π is a 
"dangerous tool". In practice, we think, a programmer 
would probably use a language (in form of a π-library) she/
he is familiar with and add only several new patterns. An 
experienced language designer might use π in another, 
more advanced way. In our opinion, freedom in program-
ming should not neglectfully sacrificed just for a higher 
safety. Natural language is the most powerful tool of com-
munication we know and at the same time it is far from 
being open to formal proofs as ambiguities in natural lan-
guage are resolved by further inquiries of the "pro-
grammed" person instead of using a (very restricted) un-
ambiguous language in the first place.  In the future we will 
therefore concentrate our research on how to give pro-
grammers (IDE-)support and intelligent feedback for 
pattern-programming.  Based on their experience,  pro-
grammers themselves will learn how to write programs 
which are adequate for them. So, with minimal personal 
insight and partial program analysis, it is possible to write 
type-safe π-programs. If we were afraid that our children 
died of a car accident,  then we might consider to never let 
them drive a car, at all. Or we might think about giving 
them the best training and advice around to prepare them as 
good as we can for any eventuality. This is the concept that 

π follows.  π does not want to put any restrictions on the 
programmer by force.

Our hope  is that π will be used as an open artifact for 
studying the concept of patterns in programming and ex-
perimenting with many other new ideas and languages. In 
our opinion,  there should be a common open source stan-
dard pattern language for the community, like, for instance, 
Haskell serves for functional programming. π could be a 
first source of inspiration for such a language. At least, 
π might serve as a basis for a lot of gedankenexperiments.
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