
π – a Pattern Language

Roman Knöll
Faculty of Computer Science

TUD – Technische Universität Darmstadt
knoell@st.informatik.tu-darmstadt.de

Mira Mezini
Faculty of Computer Science

TUD – Technische Universität Darmstadt
mezini@informatik.tu-darmstadt.de

Abstract
Current programming languages and techniques realize
many features which allow their users to extend these
languages on a semantic basis: classes, functions, inter-
faces, aspects and other entities can be defined. However,
there is a lack of modern programming languages which
are both semantically and syntactically extensible from
within the language itself, i.e., with no additional tool or
meta-language. In this paper we present π as an approach
that aims to overcome this lack. π provides an abstraction
mechanism based on parameterized symbols which is ca-
pable of semantically and syntactically unifying program-
ming concepts like variables, control-structures, procedures
and functions into one concept: the pattern. We have evalu-
ated the abstraction potential and the syntactic extensibility
of π by successfully creating patterns for the aforemen-
tioned programming concepts. π could serve as a tool for
designing new experimental languages and might generally
influence the view we have on current programming con-
cepts.

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming; D.2.10 [Software
Engineering]: Design; D.3.1 [Programming Languages]:
Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language Classifications - Extensible
languages; D.3.3 [Programming Languages]: Language
Constructs and Features - Patterns; D.3.4 [Programming
Languages]: Processors - Interpreters; F.4.3
[Mathematical Logic and Formal Languages]: Formal
Languages I.1.3 [Symbolic and Algebraic Manipula-
tion]: Languages and Systems

General Terms Design, Languages, Theory

Keywords Patterns, pattern language, semiotics, extensi-
bility, language extension, language design, domain
specific languages, macros

2009 ACM. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in Proceeding of the 24th ACM SIGPLAN conference on Object Oriented
Programming Systems Languages and Applications, 2009.
http://portal.acm.org/citation.cfm?doid=1640089.1640128

1. Introduction

1.1. Motivation and Problem

Language Design The authors were experimenting with
new programming languages in the field of naturalistic
design. Hereby, the overall process of creating new experi-
mental languages seemed inconvenient to us: the syntax has
to be specified in a modified way fitting exactly the gram-
matical requirements of a particular parser; then, helper
code has to be written to dissect the parse-tree. Finally, the
semantics (in the form of code fragments) are added by
assigning a meaning to the nodes of the parse-tree. We
found that this process is very tedious and error-prone;
thus, we stipulate that there should be a cleaner and easier
way to create new (experimental) languages.

Macros and Notation The use of macros is popular and
widespread, ranging over different languages from C to
LISP. Macros give the programmers more control over the
language. Yet, a lot of contemporary programming
languages lack a syntactic macro facility. Current languages
are "given" to us by some company, language designer or
independent project group. Certainly, we would design
some features different in some way or introduce new fea-
tures sooner as they would maybe happen to come with the
next release. A macro facility would be a way to mobilize
our creativity for the overall advancement of a language.
Therefore, there should be a clean and easy way to syntac-
tically extend languages.

Domain Specific Languages DSLs play an increasingly
important role, in research as well as in practice. This kind
of languages – and especially the philosophy behind – ad-
dresses the need for well adjusted notations for specific
problem domains. Furthermore, DSLs could be a great
help to find a common language with both the customers
and the developers to specify the requirements of software.
We think that domain specific modeling needs an adequate
language, i.e., there should be a clean and easy way to de-
sign new domain specific languages and notations.

Abstraction Itself  Certain ideas of contemporary pro-
gramming technologies have something very deep in com-
mon: they all are the result of (computer) scientists' drive
for abstraction. Assembler programmers had to deal with
ever repeating tasks in their programs. They would intro-
duce labels so that code-fragments can be reused in an ab-
stract way. Then, they would soon use a stack to pass "val-
ues" to the labeled code fragment. What followed is the

birth of functions and modules (of functions). Functions in
turn led to generic functions and classes, classes led to ge-
neric classes and aspects, aspects lead to... ? This whole
process is about abstraction. So, our question was: if all
advancement in programming languages is abstraction,
both semantic and syntactic, why then isn't there a language
which is completely dedicated to that paradigm? Would
current programming techniques appear as facets of some
general abstraction mechanism behind the scene?

1.2. The Essence: Patterns

"A pattern is a plan that has some number of parts and shows
you how each part turns a face to the other parts, how each
joins with the other parts or stands off [...]. A pattern should
give hints or clues as to when and where it is best put to use. [...]
some of the parts of a pattern may be holes, or slots, in which
other things may be placed at a later time." — Christopher
Alexander

What do the scenarios described so far have in common? In
each scenario, a programmer defines one or more code
fragments, i.e. whole languages or DSLs, macros or func-
tions, and assigns a certain syntax to them, respectively the
language- or DSL-syntax, the macro-syntax or the function-
syntax (the function signature). This syntax, having pa-
rameters, introduces a context that brings variability to the
code fragment: the syntax is a parameterized symbol with
an associated meaning, the code-fragment. The particular
motivation varies from scenario to scenario. However, the
essence of this is the creation of a pattern1. We denote that
as follows:

symbol ➞ meaning

1.2..1 The Parameterization of Symbols

"A good pattern will say how changes can be made in the
course of time. Thus some choices of the plan are built in as
part of the pattern [...]. In this way a pattern stands for a de-
sign space in which you can choose, on the fly, your own path
for growth and change." — Christopher Alexander

We briefly visit semiotics as semiotics is the basis of our
work. In our culture, symbols are combined to create more
complex symbols with more complex and more concise
meanings. For instance, the following sign has the meaning
that something is prohibited. It leaves a space to symbolize
this unwanted thing or action:

1 Our notion of a pattern is only indirectly related to the notion of a design

pattern well-known from the book "Design Patterns. Elements of Reus-
able Object-Oriented Software." by Erich Gamma et al.; to some extent
those patterns could be modeled in a pattern language like π. Neither is
our notion of a pattern language related to the BETA-language [24]
except for the fact that BETA unifies classes and methods – like
π does – into the concept of a "pattern".

This symbol is a parameterized symbol (or short: syn-
tax). Together with its meaning it establishes a pattern.
Slots describe the existence of these concrete possibilities
within the symbol for customizing them by other parameter
symbols (or short: parameters). The slots in the following
mathematical sum symbol are illustrated on the right by
dashed boxes:

The slots at the following example from programming
are underlined:
while (i <= 10) {
 sum += a[i];
}

while (expression) {
 instructions
}

We call the set of all symbols which could be created on
the basis of a parameterized symbol by inserting other
symbols as parameters into the slots the concretization of
the parameterized symbol. The concretization of a pattern
is then the concretization of the parameterized symbol of
the pattern if it has one; synonymous notions are: the sym-
bols realized by a pattern, the applications of a pattern or
the symbols derived from the pattern. We say that a symbol
matches a pattern if it is part of the concretization of the
respective pattern.

Given a symbol of a pattern, we call the symbols that
fill the slots of that pattern the sub-symbols (or primary
sub-symbols) of the respective symbol, the sub-symbols of
the sub-symbols accordingly sub-sub-symbols (or secon-
dary sub-symbols), and so on.

The slot in the prohibition sign here is untyped, i.e., any
symbol can be inserted here whereas the slots in the while-
loop are typed: only expressions and instructions can be
used as valid parameter symbols. In general, any predicate
could be used to define the type of a slot – as with predicate
dispatch in programming.

1.2..2 Programming and Semiotics
Programming is a special form of communication which
aims at communicating an expected behavior from a send-
ing system, e.g., a person, a computer or a machine, to a
receiving system. The programming is successful when the
receiving system shows the intended behavior. The lan-
guage used to communicate the behavior is a programming

!!
10

i = 1

a
i

language. This process is symbolic. The process of agree-
ing on the meaning of a symbol involves making the actual
link between the symbol and the meaning at some time.
Any parameterized entity is able to be a container for
meaning.

In semiotics, the relation between a symbol and "its"
meaning is represented by the semiotic triangle:1

In this diagram, the relation between a symbol (syntax)
and its referent (meaning) is shown as an imputed relation
which is created by our mind, having a thought (pattern).
For instance, the sequence of Latin characters "cow" (syn-
tax; only for the speakers of English, of course) refers to
the idea of the actual entity "cow" (meaning). This is our
"cow-pattern" we have in mind.

1.3. The Goal: A Pattern Language
"This leads me to claim that, from now on, a main goal in
designing a language should be to plan for growth. [...] Lisp
was designed by one man, a smart man, and it works in a way
that I think he did not plan for. In Lisp, new words defined by
the user look like primitives and, what is more, all primitives

look like words defined by the user!"2 — Guy Steele

Coming back from general semiotics to programming, the
important questions are the following: what would the es-

1 The idea of the semiotic triangle has been developed by several philoso-

phers at different times. Therefore, the actually used notions for three
constituents of the semiotic triangle vary a lot, although the idea behind
them is the same. Charles Kay Ogden and Ivor Armstrong Richards use
the trinity symbol/thought/referent Charles Sanders Peirce icon/
interpretant/object and Ferdinand de Saussure (Charles Sanders Peirce
and Ferdinand de Saussure are two of the founders of modern semiotics)
signifiant/signifié/chose. In other systems, the word "meaning" denotes
what is called "thought" in the semiotic triangle as described here, since
the thought is the meaning of a symbol. However, as in our notation the
meaning of the symbol is explicitly stated by the meaning-part of the
pattern we decided to call this part meaning instead of denotation or
referent. Actually, the construction corresponding to "thought" in the
semiotic triangle, is the whole pattern, or at least the part
symbol ➞ meaning.

2 This citation and all others of Guy Steel are taken from his speech
"Growing a Language" on the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 1998.

Thought

Symbol Referent

sential features of a pattern-language be? what should a
pattern-language look like? We think that a pattern-
language should support…

a) full syntactical extensibility:  the definition of arbi-
trary new (context-free) syntax is possible – in order to
provide a mean for recording recurrent programming
patterns. Speaking abstract, the ideal language realiz-
ing what we wish would have the means to associate
any syntax with any given meaning – dynamically.
Thus, it should have some facility of the form:

syntax ➞ meaning

b) (syntactic) homogeneity: the integration of new syn-
tax is seamless. The same criteria has been defined for
good macro languages; Brabrand and Schwartzbach
say about the "ideal macro language" [7]: "[it] would
allow all nonterminals of the host language grammar
to be extended with arbitrary new productions, defin-
ing new constructs that appear to the programmer as if
they were part of the original language."

c) full semantical grounding:  the meaning of every
symbol (expression) in the language, except for a
minimal predefined core language, is defined /
 definable by other expressions of the language in a
non-circular way. This property holds for current pro-
gramming languages, too; however, we want to em-
phasize that the core language, which all other patterns
are defined on top, should be minimal. This property
shall not be mistaken for being able to prove termina-
tion of a program.

d) reflection completeness: every entity of the language
– and of the interpreter, for example, instructions,
functions and concepts, is referenceable from within
the language.

e) meta-completeness:  there is a meta-level to talk
about the language itself (which is provided by
reflection-completeness). This meta-level language
does neither syntactically nor semantically (in the way
it is evaluated) differ from the rest of the language, it
actually is (syntactically) the same language and does
not open a cascade of meta-levels; for instance, LISP
is meta-complete. This aspect is related to homogene-
ity and includes the sub-aspect full syntactical ground-
ing: every aspect of the grammar describing the lan-
guage is expressible in the language itself.

f) full semantical extensibility:  this is fulfilled by
nearly all programming languages, only machine code
having no mean of abstraction, e.g. functions; we add
it here for the sake of completeness.

Such a language could solve the problems we have encoun-
tered:

• The design of new languages or DSLs would be eased
as these languages could be defined as libraries of an
extensible language.

• A special macro facility would not be necessary be-
cause syntactic extensions would be available directly
in the language.

• A pattern-language would exactly model what abstrac-
tion in programming is: recognizing a repeating pat-
tern, naming it, declaring a symbol for it and making it
context-dependent by parameterization.

1.4. Our Proposal in a Nutshell

A π-program is a sequence of instruction symbols (techni-
cally, sentences), each being a sequence of (Unicode) char-
acters. The sentences are then evaluated (executed) in the
respective order. There is only one language construct in π:
the pattern. Patterns are, simply speaking, EBNF-
expressions with an associated meaning; a pattern can be
easiest understood as a function with a syntactically com-
plex (context-free) "signature". The non-terminal symbols
in the signature are then the parameters of the pattern.

A new parameterized symbol (syntax) is defined by the
pattern-declaration instruction (the parameters are under-
lined here):
declare_pattern ≔ syntax ➞ meaning;

This notation reduces the pattern-definition to the abso-
lutely necessary: syntax and meaning. In addition to that,
patterns can be named and in order to provide type safety,
each pattern can have an (explicit) type. This type defines
all places where the occurrence of the respective symbol
will be valid in the program. So the complete pattern-
declaration instruction looks as follows:
declare_pattern name ≔ syntax ⇒ type ➞ meaning;

An example: the following pattern declaration defines
both the syntax and the semantics of integer-potentiation
symbols like, for instance, 174^3 or 2^19. All constructs
used here for defining the meaning of that pattern are pre-
defined in π and can for now be interpreted in an intuitive
way (see below; %W- suppresses the occurrence of
whitespaces):
declare_pattern
 integer_potentiation ≔
 integer:i %W- "^" %W- integer:j

 ⇒ integer ➞
 {
 int result = i;
 for (int k = 1; k <= j-1; k++)
 result *= i;
 return result;
 };

After the declaration of that pattern, its applications can
be immediately used at any place where an integer symbol
may occur, e.g., in an instruction like print(174^3);.

We will see later that the pattern-declaration instruction
and any other of the predefined instructions of π, the so
called "core-pattern-set", are patterns themselves; they are,
for instance, instruction patterns like the pattern-declaration
instruction, the print instruction and the for-loop or data
patterns like the integer pattern or the pattern pattern – yes,
a pattern is a pattern itself, its syntax is as follows:
name "≔" syntax "⇒" type "➞" meaning

Thus, the actual pattern-declaration instruction has the
following syntax, i.e., it takes a pattern as a parameter:
"declare_pattern" pattern ";"

The following little code-fragment is a complete π-
program consisting of two pattern-declaration instructions
and two other (predefined) instructions, print and if,
immediately making use of the just defined symbols (the
operators ">" and "? :" are predefined patterns):
(1) declare_pattern maximum ≔
 "max" "(" integer:a "," integer:b ")"
 ⇒ integer ➞ (a > b) ? a : b;

(2) print(max (13^2, 101));

(3) declare_pattern absolute_value ≔
 "|" integer:i "|" ⇒ integer ➞
 (i ≥ 0) ? i : -i;

(4) if (max (13^2, |-171|) > 169)
 print ("yes!");

After the first pattern-declaration (line 1), the interpreter
would "know" the pattern "maximum". Therefore the sec-
ond instruction (line 2) is correctly interpreted. After the
second pattern-declaration (line 3), the interpreter knows
both the user-defined patterns "maximum" and "absolute-
value" and can correctly interpret the last instruction-
symbol (line 4) which is making use of both of them.

1.5. Our Contribution
With this work, we contribute to the current research in two
ways; the following is our hard contribution:

Development of a Powerful Abstraction Concept Based
on the conviction that the essence of programming is ab-
straction, we created a programming language that is com-
pletely dedicated to that idea – π. π integrates and abstracts
ideas from several different fields such as macros and DSLs
into a very expressive post-paradigmatic language. Even-
tually, π is an approach of creating not only a semantically
but also a syntactically minimal language.

Implementation of a Pattern-Language π is the first
implementation of a pattern language. Technically, a pat-
tern language is a language in which other programming
languages are both syntactically as well as semantically
reproducible with additional syntactic-extensibility and
which fulfills all the criteria defined in section 1.3.

Our soft contribution, namely the philosophy behind π, will
be discussed in chapter 7 of this work.

1.6. An Overview of this Work

In the following chapter, we describe the π-language. After
that, we briefly discuss our implementation of the π-
interpreter. We then evaluate the expressiveness of π by
defining several language constructs existing in current
programming languages in π. Afterwards, we provide an
overview on related ideas. Finally, we conclude this work
with a discussion of future work and a résumé.

2. The Language
"But instead of designing a thing, you need to design a way of
doing." — Guy Steele

In the preceding chapter we defined the notation of a pat-
tern as a parameterized symbol with an associated meaning
and we have seen a pattern-declaration instruction to intro-
duce new patterns to π. Now, we concretely describe how
to define patterns and how to use the symbols derived from
these patterns.

2.1. The Syntax-Pattern

First of all, π does not have a syntax in a traditional
sense: it is not the language which has a syntax, but each
single pattern has its syntax. π has predefined patterns (the
core pattern set; short CPS) and user-defined-patterns; the
language is the set of these patterns. However, even the
syntax of predefined patterns can be dynamically changed –
 thus effecting all following instructions, i.e., there is no
fixed syntax in π at all.

As with typical grammars, the syntax of a pattern de-
fines the way the characters have to be assembled in order
to represent the respective parameterized symbol of the
pattern. The syntax of a pattern is defined like the right side
of an EBNF production rule since the latter can be seen as a
parameterized symbol with the nonterminal symbols repre-
senting the slots of the parametrized symbol. We call our
form of EBNF π-EBNF what is something like the domain-
specific syntax sub-language of π for the definition of pat-
terns. What follows is the definition of π-EBNF written in
π-EBNF itself; this is no coincidence as all "syntax" in π is
just a symbol derived from the predefined syntax pattern of
the core pattern set (the non-terminals, i.e., the slots, are
underlined in the rules):
syntax ≔ constant_syntax | slot_syntax |

 sequence_syntax | optional_syntax |
 or_syntax | zero_or_more_syntax |
 one_or_more_syntax | bracketed_syntax

constant_syntax ≔ »"« { character } »"« [":" name]

slot_syntax ≔ %I (pattern_name) [":" name]

sequence_syntax ≔ syntax ⁅ syntax ⁆

optional_syntax ≔ "[" syntax "]" [":" name]

or_syntax ≔ syntax ⁅ "|" syntax ⁆

zero_or_more_syntax ≔ "{" syntax "}" [":" name]

one_or_more_syntax ≔ "⁅" syntax "⁆" [":" name]

bracketed_syntax ≔ "(" syntax ")" [":" name]

We call the sequence-syntax, the or-syntax, the zero-or-
more-syntax and the one-or-more-syntax multi-slots as
these syntax-rules hold not only one slot but several slots.
Nearly all syntax-patterns support an optional name so that
they can be referenced when defining the meaning of a
pattern. Names have to be unique only on the same level of
nesting.

In π, the lexer is completely integrated into the parser as
the π-lexer does nothing but classify the input characters
into categories such as letters, digits, whitespaces and the
like. That way, all literal symbols, e.g., the integer or float
ing-point-number literals, can be defined by regular π-
patterns (integer pattern and floating-point-number pattern
in the CPS; or short "int" and "float") and there are no
name-clashes at all with "keywords" like it is the case in a
lot of current programming languages. π has a notation for
different whitespaces, e.g., %S_ stands for a medium
whitespace and %W- for no whitespace. Furthermore,
π supports syntax for additional formatting as %I for italic
font and %U for underlined text or %SUPER for superscript
characters.

2.2. The Meaning-Pattern
We now assign a meaning to the pattern-syntax. The mean-
ing of new patterns in π is defined by making use of sym-
bols derived from already existing patterns, which are, after
the startup of the interpreter, only the patterns predefined in
the core pattern set (in this section, we will introduce sev-
eral core-patterns along the way). In π, the difference be-
tween "language" and "program" vanishes: "language" is
just an alternative name for the core pattern set and "pro-
gram" denotes the actual symbolic input to the interpreter
including the set of user-defined patterns. Let us have a
look at the following two examples:
declare_pattern ≔ "e" ➞ 2.718281828459;

declare_pattern ≔ integer:i "^2" ➞ i * i;

The first of these easy pattern definitions defines the
symbol "e" to be an approximation of Euler's number. The
second pattern defines the meaning of a squared-integer
symbol, i.e., an integer symbol followed by a constant
symbol "^2" meaning the product of the integer with itself.
The integer-multiplication pattern is a pattern in the CPS:
its meaning is predefined as the integer-symbol which is the
"conventional result" of the integer-multiplication. Let us
have a look at another example:

pattern ≔ "count_up_to" "(" integer:i ")" ➞

{
 int j = 1;
 while (j <= i)
 {
 print (j);
 j++;
 }
}

This pattern-definition resembles very strong a conven-
tional method declaration in C-style-languages. This is the
point were semiotic theory meets with programming: on the
one hand, it is true, this pattern definition is like a C-
method definition; on the other hand, we do exactly the
same as before: we are defining the meaning of a parame-
terized symbol by making use of already predefined sym-
bols, respectively predefined patterns. So, the general ap-
proach is the same, it differs only in the kind of patterns we
use: before, we used a constant and an operator symbol,
now we use "algorithmic" symbols like the block or the
while-loop symbol; both are in the CPS as well as the
integer-variable-declaration pattern, the smaller-comparison
pattern, the increment pattern and the print pattern:
"int" name ["=" integer:initial_value]

"while" "(" expression ")" instruction

integer "<=" integer

integer "++"

"print" "(" symbol ")"

As we have seen, the meaning of a pattern can be de-
fined in two ways, we call them the "functional" and the
"imperative" style. In π, this looks as follows:
meaning ≔ functional_meaning | imperative_meaning

functional_meaning ≔ expression

imperative_meaning ≔ instruction

Both styles represent two sides of the same coin: what
else is a "calculation"(-function) than performing actions on
symbols, i.e., symbol-manipulation? What else is an in-
struction than a function having side-effects? π-symbols, as
any other symbol in programming, encode behavior of a
computer system. So, the relevant thing is not how behavior
is defined but that it is defined correctly.

2.2..1 Parameter Binding
We now have a look at how the symbols in the slots of the
patterns are made available for the meaning definition, i.e.,
how they can be referenced in the meaning definition. In
imperative languages this making available is done by
treating the parameters of a method like locally defined
variables, being implicitly initialized on a method call. In π,
explicit referencing is similar to – yet not alike – the way
just described.

Look at the following pattern which aims at defining a
convenient lightweight notation for printing a non-empty

list of integers as print(3,2,8,1) (the for-loop pattern is
a user-defined pattern based on the while pattern):
print_integers ≔
 "print" "(" integer:first
 { "," integer:i }:following ")" ➞
{
 print (first);

 if (present(following))
 for (int k=0; k<=size_of(following)-1; k++)
 print(following[k].i);
}

The first parameter of the print-integers pattern is refer-
enced by "first". The name of the following zero-or-more
symbol of integers, each separated by a comma, is
"following". The content of the sequence is referenced us-
ing the widespread array-notation: "following[k]". The
"."-notation allows to access the sub-elements of multi-
slots: "following[k].i". The length of the sequence can be
retrieved by the size-of pattern and the present-pattern
checks the presence or absence of some optional symbol
(both these patterns are in the CPS).

The parameters of less complex patterns can be refer-
enced by their type instead of a name whenever this is pos-
sible without ambiguity; we call this implicit referencing:
"twice" "(" integer ")" ➞ 2 * integer

We sometimes need to reference not only the parame-
ters of the pattern but also the sub-symbols of these pa-
rameters. We call this kind of referencing pass-through
referencing. The notation is analogous to the "."-notation
for referencing the sub-elements of multi-slots.

Assuming that the integer pattern is defined as follows:
integer ≔ non_zero_digit:first_digit

 { digit }:following_digits

Then, a pattern to calculate the nth digit of an integer
can be defined as follows:
declare_pattern ≔ "nth_digit" "(" integer:index

 "," integer:i ")" ➞
{
 if (index = 1)
 return i.first_digit;

 return i.following_digits[index-2].digit;
}

2.2..2 Recursion

There are two types of recursion in π which correspond to
the two main parts a pattern consist of: semantic recursion
and syntactic recursion. The former recursion is the usage
of the symbols defined by the pattern in the meaning-
definition of the pattern itself, the latter is the usage of the
pattern in its own pattern-syntax. The following example
for syntactic recursion defines an array pattern which can
have multi-dimensional sub-arrays (an array, like all data
patterns does not need a meaning as there is nothing to
evaluate with pure data, e.g. all literals in π are data sym-
bols):

array ≔ "[" array | integer

 { "," array | integer }:following "]"
 ⇒ data

2.2..3 Reflection

It is an essential part of the philosophy of π is that all enti-
ties and all functionality of the language (technically, the
interpreter) are fully accessible from within the language.
In the introduction, we called this property reflection com-
pleteness. Consequently, all actions the interpreter supports
and all data-types it uses are available within the language
as predefined patterns, for instance, there is an evaluate
pattern (which is similar to the eval-command in other
languages; the parsed-symbol pattern is the parse-tree in π):
evaluate ≔ "evaluate" "(" parsed_symbol ")"

 ⇒ symbol

2.3. The Name and the Type

Pattern-names in π are predefined symbols as any other,
even though they fulfill the important function of – spea-
king in terms of the semiotic triangle – making the link
between syntax and semantic tangible. The name of a pat-
tern must be unique.
π has a strong, dynamic, explicit type system. The type

of a pattern defines both where the symbols defined by the
pattern may occur in the input, i.e., the replacement scheme
of the grammar and the pattern of the resulting symbol pos-
sibly calculated by the pattern. For instance, the type of the
integer-sum-pattern is integer, too:

integer_sum ≔ integer "+" integer ⇒ integer

The type of a symbol is the type of the corresponding
pattern. The implicit super-type of all patterns is symbol.
π supports "higher-order-patterns"; for example, the

pattern-declaration pattern takes a pattern as a parameter.
Patterns in π are just all symbols that can be derived from
the pattern-pattern.

2.3..1 Type Safety and Static Semantic

As in π patterns – and with the patterns new symbols – can
be declared dynamically, there cannot be any static seman-
tic of a π-program. Nonetheless, π is a dynamically type-
checked programming language since all resulting symbols
are dynamically checked (parsed) for their pattern. Accord-
ing to the philosophy of π, it is open to the programmer if
she/he wants to establish a static semantic or not. There are
basically three approaches how one can write π-programs:

Scenario I — "bad π" The most "dangerous" use of
pattern-declarations is to introduce new syntax and seman-
tics based on unpredictable user inputs or randomness:
declare_pattern new_pattern ≔
 "#"+read(character_string)
 ⇒ integer ➞ random_integer();

In this case, the meaning of a possibly following
instruction-symbol like, for instance, print(#abc) is not
at all predictable.

Scenario II — "better π" Even if the language provides
the most freedom, a good programmer will put restrictions
on herself/himself: she/he would abstain from using that
kind of pattern-declarations. Yet, there are still problematic
cases, namely conditional pattern declarations, i.e.,
pattern-declarations whose execution depends on dynamic
properties of the program:
if (i > 5)
{
 pattern signum ≔ "sign" "(" integer ")"

 ⇒ integer ➞ r > 0 ? 1 : (r < 0 ? -1 : 0);

}

print (sign (i));

In this case, the instruction-symbol print(sign(i))
is only interpretable if the variable "i" is greater than five.

Scenario III — "good π" Thus, an even better pro-
grammer would also abstain from using conditional
pattern-declarations.

She/he would declare patterns in libraries (π-code-files)
which would be loaded at startup and would at best use
local unconditional pattern declarations like, e.g., in the
following example:
pattern divisor ≔ integer:a "|" integer:b

 ⇒ boolean ➞ b % a = 0;

integer r = random_integer;

if (3|r)
{
 pattern signum ≔ "sign" "(" integer ")"

 ⇒ integer ➞ r > 0 ? 1 : (r < 0 ? -1 : 0);

 print (sign (r));
}

In this case, the π-program has a static semantic as the
set of active patterns at any point in the program is fully
predictable: patterns in this scenario behave like ordinary
functions with a possibly complex signature; after a "re-
naming" from pattern-syntax to function names and a flat-
tening of the parameter-tree, conventional static type-
checking would be applicable.

2.4. The Interpretation
Every sentence that is send to the interpreter, i.e., every
symbol in form of a sequence of characters, will be inter-
preted according to the current state of the interpreter. The
state is completely determined by the set of currently active
patterns (we call it the context of the interpreter): a symbol
is accepted if it can be be recognized as the application of
one or more of the currently active patterns, all other sym-
bols are rejected as uninterpretable (meaningless). The in-
terpreter accepts only instruction-symbols (short: instruc-

tions). All other symbols are rejected as inappropriate sen-
tences.

2.4..1 Dispatch
In general, there are two cases when an input-symbol
matches more than one pattern, i.e., the parse-tree is am-
biguous: in the first case, the parse trees contains only pat-
terns which are partially homonymous, i.e., basically have
the same syntax but differ in the types of the slots. In this
case, the dispatcher performs the selection by considering
the sequence of slots as members of a lattice and decides
according to the order defined on the lattice; this is the
most widespread variant of realizing symmetrical multi-
dispatch.

Since this is a partial order, only in the case that one
interpretation of the input is more specific in every slot, this
variant is selected, else the input is rejected by stating an
ambiguity. In the second case, when the parse-trees differ in
other ways than just being partially homonymous patterns,
the input is rejected as syntactically ambiguous which is an
indication for poor pattern-design.

2.4..2 The Evaluation

The evaluation of a symbol in π means evaluating the
meaning of the corresponding pattern. The meaning is
looked up in the pattern-list of the interpreter. The actual
purpose of a meaning is twofold: either the meaning-
symbol causes side-effects or it does not; either it does
calculate/create a resulting symbol (short: result) or it does
not.

If the pattern is predefined, then its predefined meaning
is realized, i.e., the respective side effects, for instance,
printing on the console, take place. If the pattern is user-
defined, then the interpreter will interpret the associated
user-defined meaning-symbol which in turn uses other
user-defined and predefined symbols.

The resulting symbol of a symbol is the result of the
rewriting of the respective symbol taking place during the
evaluation; for instance, the integer-sum symbols do re-
write themselves to the integer symbol that is considered to
be the "sum" of these two integers. A result is then inserted
into the slots of other symbols in the further process of
evaluation.

The way this result is created can be different: the
"functional" way would be to "directly" evaluate other
symbols in order to come to a result; the "algorithmic"
("imperative") way would be to describe a process which is
creating the result. As already mentioned, in π, there is no
difference between these approaches as "imperative" pat-
terns are evaluated in exactly the same way as "functional"
patterns are, by causing side-effects and creating a resulting
symbol.

Patterns that do not explicitly calculate a resulting sym-
bol, implicitly are rewritten to the null-symbol (we use the
Unicode no-character glyph: ␢).
π basically cannot have a strict evaluation strategy as

conditional instruction patterns, e.g., the if-then-else pat-

tern, depend on the possibility to not evaluate/execute
parameters. Consequently, π supports lazy evaluation in the
form of explicit evaluation (call-by-name) and implicit
evaluation (call-by-need) which together are equivalent to
leaving the decision on the concrete evaluation of the pa-
rameters up to the programmer instead of enforcing a stan-
dard evaluation strategy.

The predefined evaluate-reference(-pattern) (in the
CPS) provides a mean to explicitly evaluate parameters:
evaluate ≔ "evaluate" "(" reference ")"

 ⇒ reference

It would be used in pattern-declarations as follows:
unless ≔
 "unless" "(" expression ")" instruction
 ⇒ instruction ➞
 if (!expression) evaluate(instruction);

The expression-parameter of the unless-pattern is not
explicitly evaluated but implicitly: whenever a reference to
a parameter is used without the evaluation-pattern then the
evaluation will take place implicitly. In this case, π uses the
call-by-need strategy: once evaluated the results of the pa-
rameters are buffered in order to prevent multiple, possibly
time-intensive re-evaluations of the parameters. The
following example uses only the implicit evaluation vari-
ant:
integer_potentiation ≔
 integer:i "^" integer:j
 ⇒ integer ➞
{
 int result = i;

 for (int k = 1; k <= j-1; k++)
 result *= i;

 return result;
}

2.5. The Core Pattern Set
"If I want to help other persons to write all sorts of programs,
should I design a small programming language or a large one?
[...] I should not design a small language, and I should not
design a large one. I need to design a language that can grow. I
need to plan ways in which it might grow – but I need, too, to
leave some choices so that other persons can make those choices
at a later time." — Guy Steele

We have seen already a lot of the patterns built into the core
pattern set. π is a semantically and syntactically minimal
language because like the λ-calculus' abstraction and appli-
cation constructs, π would as well need only these two lan-
guage constructs (predefined core patterns), only the ab-
straction would have to be extended by a possibility to de-
fine new parametrized symbols – i.e. the abstraction would
be the pattern-declaration-pattern – and the application

would then interpret symbols in the context of these pat-
terns.
However, as the focus of this article is to describe a pattern-
language as such and not its minimality in particular, we do
not argue or even prove the necessity of patterns to include
in the CPS or not. We therefore did define the CPS in an
informal way by choosing the syntax and the semantics that
most programmers are familiar with from other program-
ming languages (LISP- or Pascal-style syntax could be
added to π, too). There is not the one core pattern set. Sev-
eral sets of core patterns would be adequate for a realiza-
tion of the π-language since patterns can be defined on top
of other patterns; the only absolutely unavoidable pattern is
some pattern-declaration-pattern. The CPS should be inter-
preted rather as a proposal and an outline, mainly used for
the definition of the patterns in the evaluation of this work,
than as a fix definition. We provide some examples of the
categories the patterns in the CPS are grouped by.

Declaration (Meta-)Patterns  Considering the remarks
made so far, it is not an exaggeration to say that the whole
concept of π is based on two patterns, the pattern-pattern
and the pattern-declaration pattern – which exactly reflect
the philosophy of π:
pattern ≔
 name "≔" syntax "⇒" type "➞" meaning ⇒ data

pattern_declaration ≔
 "declare_pattern" pattern

 ⇒ instruction

Mathematical Operator Patterns  The most common
mathematical operators are predefined in infix notation
both for integers and floats and the combinations of them:
integer_multiplication ≔

 integer:a ("*" | "·") integer:b ⇒ integer

Logical Patterns The basic logical conjunctions are pre-
defined, as well with mathematical notation:
logical_and ≔
 boolean:a ("∧" | "and" | "&") boolean:b
 ⇒ logical_operator

logical_operator ⇒ boolean

Symbol Manipulation Patterns Patterns used for manipu-
lating symbols, i.e. in π, sequences of characters, play a
crucial role in π as symbols can be seen as the "instances"
of patterns.

The whole language is based on the principle of symbol
manipulation, or being more precisely, every programming
language is based on that principle, π just doesn't hide its
evidence.

For instance, character-string concatenation can be done
either by the "+"-operator or by a reduced space:
character_string_concatenation ≔
 character_string:a (%S- | "+")
 character_string:b ⇒ character_string

character_in_string ≔
 "(" positive_integer ")" "th_character_of"
 "(" character_string ")"

 ⇒ character

The properties of a pattern can be changed by the prede-
fined rewrite pattern. The following application of the re-
write pattern, for instance, changes the syntax of the print
pattern; it actually performs a sort of renaming:
rewrite (print.syntax, "write" "(" symbol ")");

Control-Flow Patterns  π provides several typical
control-flow patterns, among them, for instance, the if-
then-else pattern:
if_then_else ≔
 "if" "(" expression ")" instruction
 ["else" instruction:else]
 ⇒ control_flow_pattern

Data Patterns The typical data-patterns like integer, float
or boolean are predefined in π:
boolean ≔
 "true" | "false"
 ⇒ data

All other more complex data patterns like lists, matri-
ces, maps and tables can then be defined on top of these
basic data patterns.

Ontological (Meta-)Patterns  Type hierarchies can be
seen as ontologies having a type-entity and a subtype-
relation. Consequently, all patterns, including, e.g., instruc-
tion patterns, can be classified by their type:
integer_unequality_comparison ≔
 integer:a ("≠" | "!=") integer:b
 ⇒ comparison_operator

comparison_operator ⇒ boolean_operator

The is-operator pattern can be used to find out if a pat-
tern is a sub-pattern of another pattern:
is ≔ type "is" type

 ⇒ boolean_operator

The top-pattern of the ontology in π is the symbol-
pattern. It has two immediate children: the instruction pat-
tern and the expression pattern. Patterns having side-effects
and control-flow patterns should be defined as instructions;
patterns calculating a resulting symbol and data patterns
should be defined as expressions.

Communication Patterns (I/O-Patterns) In the world of
π, there is nothing but symbols and patterns. So, the com-
munication mechanism will comprise the standard means to
emit and receive symbols:
print ≔ "print" "(" symbol ")" ⇒ instruction

(World-)Knowledge-Patterns  The world surrounding a
system does contain a lot of information and knowledge
that is in most cases relevant to the system. Among these
"world"-patterns are those that define the current date, time
and location of the system:
current_date ≔ "current_date" ⇒ date

Context (Meta-)Patterns We have used references to de-
fine the meaning of patterns. References, in π, like every-
thing else (reflection-completeness), are predefined pat-
terns:
explicit_reference ≔
 name ["[" integer:index "]"]
 ["." reference]

Interpreter (Reflective) (Meta-)Patterns We have already
mentioned some of the patterns demanded by the principle
of reflection completeness in the section on reflection.
Other patterns in the same context are, for example:
parse_instruction ≔
 "parse" "(" symbol ")"

 ⇒ parsed_symbol

A parse-tree is encoded by the parsed-symbol pattern: a
parse-tree could be seen as the original input symbol with
(a lot of) additional information, especially the linkage be-
tween the read characters and the patterns they belong to.
The interpret-pattern is a user-defined pattern:
interpret ≔

 "interpret" "(" symbol ")" ⇒ symbol
 ➞ evaluate (parse (symbol))

3. Implementation
We now describe an implementation of the π-language. We
emphasize once more the strict separation of the (semantics
of the) π-language and the implementation of an interpreter
for this language. The π-language does explicitly not in-
clude any technical features of any underlying system, for
instance, something like a processor-ticks pattern or
memory-management patterns; actually, it is a pure symbol
manipulation mechanism.

Our interpreter is completely implemented in Java 6. Of
course, the central and most important element of the im-
plementation of a syntactically extensible language is the
parser. For our purpose, we re-discovered a type of parsers
which were used since the 70s almost exclusively in com-
putational linguistics but not in programming: the chart
parsers.

3.1. The Parser
Our parser is based on the modified Earley-parsing algo-
rithm [2] with several little additional improvements from
our side. The Earley-parser has three main advantages in
the context of using it for a pattern language:

• It updates relatively fast on a change of the grammar
rules while still having acceptable parsing speed; this
is crucial for a syntactically extensible language.

• Secondly, it can parse any context free grammar;
therefore programmers do not have to modify their
pattern syntax in order to comply with the require-
ments of a specific grammar, as, e.g., the restriction to
LL-grammars concerning ANTLR.

• Thirdly, the Earley-parser returns all possible readings
of an input sentence; thus, the dispatcher can then de-
cide in a later stage which reading is the one in the
respective context (see the following section).

The algorithm has a complexity of O(n3) concerning the
length of the input (O(n) in case of a LR(k)-grammar).
However, a complete description of the algorithm is by far
beyond the scope of this article.

We have furthermore developed an "Earley-parser gen-
erator", i.e., a small framework to instantiate a clean
Earley-parser with predefined rules (the ones for the prede-
fined patterns) written in EBNF.

3.2. Dispatch
In case that an input-symbol is homonymous, i.e., the
parser returns several parse trees, the parse trees are com-
pared then if they are just partially homonymous or differ
in other more complex ways. In the latter case, as described
in the section 2.4.1, the input is rejected. In the former case,
the type-distance of all sub-symbols to the slots is calcu-
lated from the parse tree and they are compared pairwise as
if in a lattice.

3.3. Evaluation
In a bootstrapping-process the predefined patterns are
loaded in several steps, considering the dependencies be-
tween them as some predefined patterns are already based
on other more basic predefined patterns, e.g., the prede-
fined integer-sum pattern uses the integer pattern which in
turn uses the digit pattern. The evaluation of predefined
patterns is straightforward: the meaning of these patterns is
defined by pure Java-code which is then executed. The
evaluation of user-defined-patterns, on the other hand, is
realized by evaluating the meaning-symbol of the respec-
tive pattern.

For example, the meaning of the following pattern is
evaluated by evaluating the integer-multiplication symbol:
square ≔ integer:i "^2"

 ⇒ integer ➞ i * i

Of course, as π is semantically grounded, every evalua-
tion of a user-defined pattern will end up in the evaluation

of predefined patterns. In both cases, the evaluation of
predefined and of user-defined patterns, the parse-tree of
the symbol to evaluate is provided as a context for the re-
solving of the parameter references. For instance, the input-
symbol 3^2 would result in the following parse-tree pro-
vided to the square pattern (we use an XML-style pretty-
print for the parse trees):
<square-symbol>
 <integer-symbol name="i">
 <non-zero-digit name="first_digit"
 literal="3">
 </integer-symbol>
 <literal="^">
 <literal="2">
</square-symbol>

The reference "i" could now be resolved by looking it
up in the parse-tree. π provides dynamic type checking as
the resulting symbols of all patterns are checked if they
match the indicated type; for example, the π-interpreter
would try to parse the result of the square-pattern as an
integer symbol. If this failed, the interpreter would throw a
type error.

3.4. Implementation Status

The current implementation of the π-interpreter has some
minor restrictions in implementing the π-language. These
are as follows:

• In the current implementation the reference pattern
differs slightly from the way as described here; all
references start with a "$". The usage of an ordinary
name pattern causes the Earley-parser to generate too
many possible results, which could easily be sorted out
at a later stage, but the sheer creation of these results
temporarily consumes too much memory; presently,
we think about working directly on the parse-chart in
order to tackle that issue.

• Nested pattern declarations as described in section
2.3.1 ("Type Safety and Static Semantic") are cur-
rently disabled since the parser would as well take too
many resources to process these (anyway deprecated)
constructions; however, we think about introducing a
kind of lazy parsing, i.e. a multi-stage-parsing which
would then be controlled directly by the π-language,
respectively by the programmer.

4. Evaluation
"It is good to design a thing, but it can be far better (and far
harder) to design a pattern. Best of all is to know when to use a
pattern." — Christopher Alexander

We evaluate the expressivity of π by revisiting several con-
cepts of current programming languages, at the same time
shedding light on these concepts from a π perspective. The
evaluation is structured along the level of abstraction the
analyzed patterns have, starting from simple notation-
definition and ending with full programming languages
realized in π. We limit our set of examples here to a few

representative ones from each category. The interested
reader can find more on our website (pi-programming.org).

4.1. Use-Case I: Language Constructs
"My point is that a good programmer in these times does not
just write programs. A good programmer builds a working vo-
cabulary. In other words, a good programmer does language
design, though not from scratch, but by building on the frame of
a base language." — Guy Steele

Language constructs are usually introduced by version
changes of programming languages as, for example, the
for-each loop and variadic methods came to Java; or they
are introduced by completely new languages, as, e.g., clo-
sures came with LISP. In π, new language constructs are
introduced by new patterns built on top of the core lan-
guage, including expressions, instructions and data pat-
terns.

4.1..1 Expression Patterns
Most contemporary programming languages lack of con-
venient notation for specific problem domains, for instance,
for mathematical or technical notations. Newer languages
such as Fortress [19] address this issue.

The definition of symbolic aliases for functions are a
major motivation for syntactic extension (see the related
work). In π, for instance, a square-root-pattern could be
defined as follows:
"√" %W- number ⇒ float
 ➞ square_root (number)

The square-root symbol could be used then in expres-
sions ("ℕ" is predefined as a synonym for the positive-
integer pattern):

if (n ∈ ℕ ∧ n ≥ 0) return √n;

Another example: in a lot of programming languages,
ordered sequences of numbers have to be expressed in the
following bloated way:
(i >= 10) && (i <= 20) && (j > 20) && (j < 40)

With the help of a user-defined operator-chain pattern
the same expression can be written in the following intui-
tive way:
10 ≤ i ≤ 20 < j < 40

4.1..2 Control Structure Patterns
Control structures such as loops can be defined as patterns:
control_structure ⇒ instruction

loop ⇒ control_structure

The most basic of all loop-constructs is the one that
performs a given action a fix number of times:

do { print ("hello!"); } (10) times

The corresponding pattern looks as follows (the execute
pattern is a synonym for the evaluate pattern):
do_times_loop ≔
 "do" instruction "(" integer:times ")" "times"

 ⇒ loop ➞
{
 for (int i = 1; i ≤ times; i++)
 execute (instruction);
}

4.2. Use-Case II: Meta-Constructs

"Meta means that you step back from your own place. What
you used to do is now what you see. What you were is now
what you act on. Verbs turn to nouns. What you used to think
of as a pattern is now treated as a thing to put in the slot of an
other pattern. A meta foo is a foo in whose slots you can put
foos." — Guy Steele

With the term "meta-construct", respectively meta-pattern,
we denote constructs whose main purpose is in defining
other patterns or helping with that. Every semantically ex-
tensible programming language must have concepts for
defining the entities of the language. In the case of Java, for
instance, these are, among others, class- and method-
declarations. By now, in π we have seen only one construct
to define other patterns: the pattern-declaration pattern.
Many other constructs could be defined on top of that.

We can define alternative – possibly reduced – notations
for repeating pattern declarations, e.g., for the declaration
of "functions" in π:

declaration ⇒ instruction

Functions – being so to speak the first real abstraction
in programming – are an ever occurring pattern in pro-
gramming borrowed from mathematics. This kind of ab-
straction can be defined in π, as well, in the following in
the widespread C-style (we use the "»" and "«" as quotation
marks (CPS) so that the upper quotation character can be
used in a readable form within the declaration-string):
function_declaration ⇒ declaration

variable_name ⇒ name

c_style_function_declaration ≔
 type name
 "("(type variable_name):first
 {"," type variable_name}:parameters ")"
 block:meaning
 ⇒ function_declaration ➞
{
 character_string pattern_string =
 »"« + name + »" "("«;

 if (present (first))
 pattern_string += slot(first.type) +

 ‶":"″ first.variable_name;

 if present (parameters)
 for (int p=0; p≤size_of(parameter)-1; p++)

 pattern_string += ‶","″ +
 slot(parameters[p].type) +
 ‶":"″ parameters[p].variable_name;

 pattern_string += ‶")"″ "⇒" type "➞" meaning;

 declare_pattern (pattern)pattern_string ;
}

Outgoing from the function-declaration, a pattern-
declaration instruction is assembled on a string-basis. This
looks similar to "macro"-programming; however, in π,
there is no "macro-expansion" but just the usual evaluation
of patterns: the assembled declaration string will be parsed
as such and immediately executed.

We can now express the simple max-operator pattern
we have previously defined in a more convenient way
("int" is defined as another synonym for "integer"):
int max(int a, int b)
{
 return a > b ? a : b;
}

4.3. Use-Case III: Libraries and Frameworks

In π, a library or a framework – we use these terms here
synonymously as both are extensible – is a considerable set
of interacting patterns serving a common purpose, i.e., a
domain specific language. The advantage of π in library
design is that the syntax of the entities in the library can be
developed according to the purpose of the library, for ex-
ample, in the domains of logging, error-handling, test-
driven-development, software metrics, GUI-design, web-
development or data-access.

A direct embedding of SQL-instructions would be very
beneficial in a programming language as a lot of applica-
tions require persistency. We exemplary define here the sql-
command "insert" assuming that the connection to the da-
tabase is realized by a pattern send_sql_command(data-
base, sql_command) and that the patterns "sql-value",
"sql-column-name" and "sql-table-name" are already de-
fined (the check-pattern stops the execution in case of an
error; the this pattern is a reference pattern referencing the
symbol itself, in this case, the whole sql-insert-statement):
sql_instruction ⇒ instruction

sql_insert_statement ≔
 "INSERT" "INTO" sql_table_name
 "(" sql_column_name
 {"," sql_column_name}:column_names
 ")" "VALUES" "("
 sql_value {"," sql_value):values
 ")" ";"
 ⇒ sql_instruction
 ➞
{
 check (size_of(column_names) = size_of(values),
 "Wrong number of values!");

 send_sql_command (current_database(), this);
}

If all CRUD-sql-commands were defined, we would be
able to seamlessly integrate sql with π:
INSERT INTO people VALUES ("Alfred", "Wissel"),
 ("Julika", "Häuser");

for_each_in (SELECT * FROM people)
 print (current.forename);

UPDATE people SET surname = "Häuser"
 WHERE forename = "Alfred" AND surname =
"Wissel";

DELETE FROM people WHERE (forename ="Alfred");

The fact that sql-commands are elements of the lan-
guage might help to reduce problems concerning sql-
injection-attacks, too, as incoming character-strings denot-
ing sql-commands can be parsed already as specific sql-
command instead of generally interpreting the – possibly
harmfully modified – commands.

4.4. Use-Case IV: Full Languages

"A language design can no longer be a thing. It must be a pat-
tern – a pattern for growth – a pattern for growing the pattern
for defining the patterns that programmers can use for their real
work and their main goal." — Guy Steele

In π, the anyhow hard to define difference between a "lan-
guage" and a "library" vanishes completely. Usually,
"languages", in contrast to "libraries", define syntax in ad-
dition to the semantics they come with. As in π every li-
brary defines syntax, as well, every library is a language.

As a proof of concept of the expressiveness of π we
define the λ-calculus in a straight-forward way, both se-
mantically and syntactically. As mentioned before, the λ-
calculus and π have a lot in common: the former is a se-
mantically minimal programming language and π is a se-
mantically and syntactically minimal programming lan-
guage.

λ_calculus ⇒ language

The λ-calculus has three types of expressions:
λ_expression ≔

 λ_variable |
 λ_abstraction |
 λ_application
 ⇒ λ_calculus

A λ-variable is represented by a lowercase-name:

λ_variable ≔ ⁅lowercase_letter⁆

The abstraction and the application look as follows:
v is a λ_variable;
e, e1 and e2 are λ_expressions;

λ_abstraction: (λv.e);

λ_application: (e1 e2) ≔
 { e1 is λ_abstraction :
 β_reduction(e1.expression, e1.variable,
e2),
 otherwise : this;

The above description is the original code-fragment in π
which defines the λ-calculus by making use of a
naturalistic-slot-definition pattern ("x, y and z are v") and a
programming-by-example-definition pattern ("name: ex-
pression"). In addition to that, a case-pattern (user-defined)
and a this-reference (CPS) are used. The complete imple-
mentation of the β-reduction-function can be found on our
website.

Considering all properties of a pattern-language, we see
a closer relation of π to languages like Scheme or Haskell.
However, object-oriented languages can also be modeled
with π. We currently work on a (prototypic) language in-
corporating some of the very basic features of Java, called
πicoJava; more information can be found on our website.

4.5. Use-Case V: Meta-Languages
"In a way, a language design of the old school is a pattern for
programs. But now we need to “go meta.” We should now
think of a language design as a pattern for language designs, a
tool for making more tools of the same kind." — Guy Steele

The concept of patterns allows to interpret languages as
sets of patterns. That way, with a language workbench, new
languages could be created by composing features (occur-
ring in different other languages). Languages, respectively
language families, could, as well, be designed in a generic
way by either leaving parts of the syntax open for exchange
or parts of the semantics, for instance, in case that different
implementations of a language for different machines
should be developed – for example, one implementation for
a multi-core system and another one for a micro-computer.

Languages could inherit from each other by sharing a
common set of patterns (e.g. C++ "extends" C), possibly
with the same syntax but with rewritten pattern-semantics.
In this context, a whole language can be seen as a para-
metrized pattern. π could be used as a super-language for
(some) of current programming languages and as a hyper-
language in the sense of being a super-language with the
additional capability to be syntactically extensible.

In this context, a pattern language behaves not only like
a parser-generator but like a whole integrated language
generator. Product line management could become a part
of the language itself rather than being an outside mecha-
nism.

5. Related Ideas
The idea of a pattern language touches several fields of
contemporary programming which are best captured by the
term "language oriented programming". This term has been
initially described in [32] by Martin Ward. It splits the de-
velopment process in three stages: the design of a problem
oriented very high level programming language, the im-
plementation of the system with this language and finally
the implementation of a compiler for this language. This
process should be performed recursively. Ward calls lan-
guage oriented programming "middle out development" in
contrast to top down or bottom up development and their
combination in outside in development. Völter [31] adds
interesting motivation for language driven development
from a practical point of view.

In general, two movements can be noticed: the "old"
movement in the 60s focussed mainly on macros as a mean
of syntactic extension, the new movement, starting in this
century is driven by DSLs, by providing extension tools for
"big" languages like Java, and the desire for composing
several languages in one, thereby creating a superlanguage
(the term "superlanguage" was coined by Christopher Dig-
gins [16]). Finally, term rewriting calculi and adaptive
grammars, standing a bit aside, are more formal approaches
to the same goal.

However, none of the works – even the closest ones
about Katahdin [23] and XMF [22] sticking very strong to
the object-oriented paradigm – draw the attention on per-
ceiving programming itself as a process of designing and
using patterns. π is a new language whose goal is not ex-
tension but which is built exclusively on the principle of
patterns – realizing all features of a pure pattern language.
π is post-paradigmatic in the sense that it does not favor
any special programming paradigm (except for "pattern
oriented programming" if itself interpreted as a paradigm).
Only syntactic homogeneity and sometimes full reflectivity
seem to be a widely accepted goals in the related work.

5.1. Syntactically Extensible Languages
Other used terms used in this field are grammar-oriented
programming or syntax-directed languages. This kind of
programming languages is closest related to the concept of
a pattern language as the goal of XMF [22] is: "An ideal-
ized superlanguage provides control over all aspects of
representation and execution. A superlanguage can be ex-
tended with new features that make it easy to represent
concepts from the application that a customer would under-
stand. [...] Each new feature that is added to a superlan-
guage has a description of how it should execute and how it
integrates with other features.".

Katahdin [23] is an object-oriented imperative (super-
)language; it is designed especially for the aspect of com-
bining several programming languages in one. Katahdin,
like π, supports the definition of syntax and semantics to-
gether as one unit. It hereby realizes the core of a pure pat-
tern language, however, it is still attached completely to the
object-oriented paradigm. Neither does it provide full re-

flectivity or meta-completeness. Despite that, the work on
Katahdin is among the most interesting works in this field
and the closest relative of a pattern-language.

XMF [22] is a syntactically extensible object-oriented
language. XMF focusses very strong on the aspect of being
a superlanguage for the use in multi-language projects. [15]
describes how to syntactically extend Java on the basis of
XMF. We find it disadvantageous that XMF forces the pro-
grammer to separately define syntax and semantics: syntax
is defined in the Grammar-construct and semantics is im-
plemented in a method "desugar" with a class implement-
ing a "Performable"-element. Nevertheless, XMF is one of
the most advanced approaches in the field of syntactically
extensible languages.

Logix [25] – currently in alpha stadium – and the eX-
tensible Language (XL) [35] allow for the definition of
user-defined syntax for operators (XL allows for a basic
nesting by predefined "block"-symbols, too). Proof assis-
tant systems like Isabelle [20] allow as well for syntactic
extensions on the operator-level.

5.2. Language Design Tools
In contrast to syntactically extensible languages, tools for
language design, mainly aim at extending existing
languages with new syntax. They divide in two groups:
general purpose compiler-compilers provide a framework
for the design of new languages, possibly with an already
written implementation of a widespread language like Java;
extension tools / facilities on the other hand aim at extend-
ing a specific existing programming language. Both ap-
proaches can be used in the context of domain specific
modeling. In a pattern language, there is no inherent differ-
ence between a library or a DSL as both syntax and seman-
tics are defined in a library. A pattern language shares as
well a common goal with model-driven development: both
aim at giving the programmer a powerful abstraction
mechanism; however, the way, this is realized is very dif-
ferent: whereas model driven development advocated on
creating a hierarchy of ever more abstract (graphical) mod-
eling languages, a pattern-language strives for meta-
completeness and primarily keeps to textual modeling.

5.2..1 Extension Tools / Facilities
The Java Syntactic Extender (JSE) as described by
Bachrach and Playford in [3] is a macro-facility for the
Java language. Code used in macros is quoted with a spe-
cial syntax of an opening "#{"-bracket and closing
"}"-bracket. References to code-fragments to be inserted
are then done by the identifier of the respective fragment
preceded by a question mark. Code fragments are then
evaluated in a multi-staged way. JSE provides only a lim-
ited syntax extension mechanism, for instance, it allows to
extend only a bunch of surface syntactic nodes of Java.
This is intended because the system focusses on the Java
language and therefore considers a lot of usability issues.

In [9] on MetaBorg / Stratego Bravenboer and Visser
describe how Java can be extended by domain specific
languages. They provide examples for direct XML repre-

sentation and a GUI-language which are realized by a
macro-like-rewriting of Java-code to Java-code. MetaBorg
aims at bringing the concepts of APIs to programming
languages.

Ometa/CLOS [33] is an object-oriented language for
pattern matching and is similar to executable grammars like
newspeak [8] – which is a general purpose language sup-
porting the expression of parser combinators. Like [1] it is
based on a parsing expression grammar (PEG) [18]. This is
a relatively new grammar formalism which is similar to
context-free grammars but supports syntax predicated and
enforces – by rule prioritizing – a unique parsing result.
We do not use a PEG as an ordering of patterns is not in-
tended in our concept of a pattern language, all patterns are
"equal" by default. Besides the higher expressivity of
PEGs, the programmer has to take care of a lot of the syn-
tactic details of the rules in a skillful way in order to guar-
antee the correct ordering of the rules.

[1] is the most recent work in the field and describes the
introduction of macros to Fortress [19]. This work has a lot
in common with Katahdin [23] and XMF [15]. As this work
concentrates on the extension of an existing language rather
than the definition of a new language it explicitly strives for
syntactic homogeneity but does not aim at reflection- nor
meta-completeness. However, the work describes an inter-
esting approach of how to organize "grammars" in modules
which may (multi-)inherit from each other.

5.2..2 Compiler Compilers
The Jakarta Tools Suite (JTS) [5] aims at creating domain-
specific languages for existing programming languages.
JTS consists of the tools "Jak" and "Bali". The former is a
meta-programming extension for Java, the latter a tool for
composing grammars.

JastAdd [21] is a compiler compiler based on aspect-
oriented modules. JastAdd supports as well a rewriting of
the AST for integrating new syntax into the language. The
JastAdd Extensible Java Compiler [17] is a full implemen-
tation of Java in the JastAdd-framework.

Theoretically, every parser is syntactically extendable, it
just has to be regenerated every time the grammar changes.
In practice, for most predictive parsers, for instance the
LL(k)-parsers generated by ANTLR, this is not realizable;
they parse very fast though but take a long time for the
generation of the automaton. "Rats!" [26] is a parser gen-
erator for Java which integrates, like the π-parser, lexing
with parsing. It uses a parsing expression grammar.

5.3. Metaprogramming
"Metaprogramming" is a very extensively used term as it
comprises macro-facilities, generative programming, multi-
stage-programming, generic programming and meta-object-
protocol implementations. We focus here on macro and
multi-stage-programming as generic programming is
widely known.

5.3..1 Macro Facilities
The term "macro" is used in various ways, as well. It
mainly refers to textual macro-processors like the C-
preprocessors or TeX or the syntactic macro-processors like
the macro-facilities of LISP, Scheme or Dylan [4]. One of
the earliest works on macros was [13] by T. E. Cheatham in
1966. Brabrand and Schwartzbach [7] give an excellent
survey on macro languages comparing eight representative
systems using 32 properties.
π is neither a lexical macro processor as it does not operate
on a purely textual basis nor is it a syntactic macro proces-
sor since there is no "pre-evaluation"-phase or "macro ex-
pansion phase" as it is called concerning LISP. From the
point of view of π, a "macro expansion" is like any other
evaluation. π does not make a difference between "normal"
data types and data which represents evaluateable code:
every symbol is evaluateable.

However, conceptually, π has a lot in common with
LISP: both are minimal languages, concerning syntax and
semantics and concerning its main concepts: lists and pat-
terns; actually, original LISP uses trees, lists are a special
data-structure defined on trees, π, too, uses trees, namely,
syntax-trees; both are homoiconic programming language,
i.e. "code" is just a special form of data. π is a little bit like
"LISP with syntax" but without a macro-expansion phase,
therefore no problems concerning hygiene occur in π.

The metamorphic syntax macros [7] are designed to
extend the syntax of a host-language, in the paper "<big-
wig>" [6], an interactive-web-service-language. Brabrand
and Schwartzbach make a difference between normal kind
of macros and metamorphic macros (hence the name): the
latter differ in that way from the former that they can be
used in the definition of other macros. In the program, the
macros are identified by their identifier. Ambiguities are
resolved, among other strategies, by declaring greedy pars-
ing as the standard parsing rule.

5.3..2 Multi-Stage Programming
MetaML [27] is a multi-stage programming language.
MetaML supports "higher-stage expressions" where the
stage of any piece of code is determined by the number of
surrounding brackets. This way, code can be treated as
usual data, created and executed in a later stage. A pattern
language is only multi-stage in the sense that assembled
symbols can be reinterpreted as instructions an then be im-
mediately evaluated. However, the evaluation of whole
code-pieces cannot be delayed to a later stage. MetaOCaml
[28, 29] is another example of multi-stage programming.

5.4. Term Rewriting Calculi
The "recursive functions algorithmic language" (REFAL)
described in [30] by Valentin Turchin is a functional pro-
gramming language that directly implements term rewriting
mechanisms by providing two basic mechanisms: pattern
matching and substitution. In general, a Refal program con-
sists of functions in arbitrary order (the starting function is
marked with the keyword $ENTRY), which in turn consist
of sentences. A sentence is the combination of a pattern and
an expression, which will be returned as the function result
if the pattern matches. So, a Refal function can be com-
pared to a set of π-patterns. In addition to that, π is related
to Refal insofar that the core principle of both languages is
pattern matching; however, Refal does not aim at syntactic
extensibility.

5.5. Adaptive Grammars
Adaptive grammars – also called modifiable, extensible,
dynamic or adaptable grammars or dynamic syntax – are a
formalisms based on the common grammar formalism but
with the extension of dynamism: there are grammar rules
that can change the rule set of the grammar during "pars-
ing". This way, adaptive grammars even become turing-
complete programming languages. Originally, adaptive
grammars, were invented very early in 1963, see [12], af-
terwards reinvented several times. [14] gives a very good
overview on these works.

The Universal Syntax and Semantics Analyzer (USSA)
as described in [11] is a formalism and a parser and a more
recent work in this field. The approach is based on a
bottom-up modifiable grammar as described in [10]. In
USSA, rules are declared in YACC-style and are organized
in "clusters". A cluster is basically a set of rules which are
then – at invocation of the cluster – added or removed from
the set of current rules. Clusters can be used to define
whole languages. In contrast to π, the semantics of USSA
patterns is scattered within those patterns. It is hard to de-
clare patterns in a consistent way since potential (syntactic)
sub-patterns have to implement semantics, as well. Sub-
patterns then communicate with their super-patterns by
global attributes. The USSA stays very technical instead of
exhibiting more the idea of patterns.

6. Future Work

Parser Performance The mentioned restrictions in the
current implementation have to be relaxed and the perform-
ance of the parser should be addressed – in general, we see
a great potential for optimizations here. Other parser and
grammar formalisms should also be considered concerning
their usefulness and applicability in the context of a pattern
language.

Integration There are several ways of how π could inte-
grate with existing languages: as a super-language, as a
domain specific language for the definition of pattern
within these languages or by directly importing source-files
of these languages into the (Java-)π-interpreter.

Debugging Pattern languages require a special treatment
of exceptions and errors because the parser has much more
importance in a pattern language; however, it often does not
provide sufficient information. So, there should be ways to
generate useful hints from this side.

Text-Formatting In order to realize the full potential of a
pattern language, IDEs should have an integrated support
for formatted text editing like current text processors and
elaborated editors do. In addition to that, an appropriate
corresponding markup file format has to be developed.

Pattern-Sharing  There should be a mechanism or a
community platform to search, exchange and share pat-
terns. This has to be done in a slightly different way than
current – neither optimal – sharing of source code because
patterns can only be identified by their name as it is hard to
query on the syntax. An open pattern library would maybe
be organized in an ontological way, having patterns be
tagged or provided with additional descriptions.

7. Résumé and Conclusion
"Well—there may be one other way, which is to use a large,
rich programming language that has grown in the course of
tens or hundreds of years, that has all we need to say what we
want to say, that we are taught as we grow up and take for
granted. [...] But that is not where we are now. [...] I hope that
we can, in this way or some other way, design a programming
language where we don’t seem to spend most of our time talk-
ing and writing in words of just one syllable." — Guy Steele

π fulfills all criteria of a pattern language: π is fully seman-
tically and syntactically extensible in a syntactically homo-
geneous way because there is no inherent difference in the
application of predefined and user-defined patterns. With
its minimal approach π is fully semantically grounded – as
every evaluation of a user-defined patterns ends up in the
evaluation of a predefined pattern – and reflection complete
as all functionality of the interpreter is accessible from
within the language.
π is as well meta-complete as the reflection language is

identical with the core language and fully syntactically
grounded as even the syntax of patterns is represented as
syntax-patterns.

This makes π post-paradigmatic in the sense thatπ di-
rectly realizes the process of abstraction in a macro-like
fashion: stop copy & paste or using IDE-source-templates.
Instead, start with an example, parameterize it and give it a
unique syntax and name.

7.1. Benefits of a Pattern-Language
We think that several fields of software engineering would
be positively affected by such a pattern oriented design, i.e.
(symbolic) abstraction as a whole as the major design prin-
ciple – thereby including other abstraction mechanisms, for
example, functions:

Productivity / Expressibility / Intuitiveness In general,
reducing code-redundancy by patterns for repeating tasks
leads to a significant reduction of errors. As pattern-
language increases the possibility for abstraction, pro-
grammers are enabled to directly express their ideas with
the syntax they want to use; thus, much faster, direct and
concise than without patterns. We think that this will com-
pensate the extra work to learn a new syntax.

Understandability  / Sustainability  / Evolvability Most
systems are designed for a long evolutionary existence. A
program written in a notation suitable for its domain of
usage is easier to read, maintain, adapt and enhance.

Structuring  / Abstraction  / Modularizability  Patterns
help in structuring the program or the problem domain; the
declaration of a pattern is the manifestation of a new idea.

Learnabili ty  /  Presentabili ty  Pattern-language-
programmers would quickly learn the meaning of new fea-
tures as they are defined on the basis of the already existing
features. Code can be written and read in the familiar way.

For instance, in real mathematical notation instead of
more or less convenient ASCII-mappings (as in the lower
variant):
f (x) = x2 + sin x - cos 2 ai

f(x) = x^2 + sin(x) - cos(2*a[i])

A pattern language could, as well, help in teaching pro-
gramming languages theory to novice programmers as from
the point of view of π programming languages can be re-
garded as a set of (changing) features.

Individuality  /  Freedom  Programmers want to have
freedom. This is a social argument rather than a technical
one. However, programming is a social action, too. Pro-
gramming is a form of expressing oneself in a creative act
which is a great stimulus for general progress and personal
satisfaction. Every programming language makes a trade-
off between freedom and safety. π aims at providing as
much of the former without completely sacrificing the lat-
ter.

Progress With a pattern-language language design be-
comes a community-process increasing the general pro-
gress in language design as syntax is then exposed to evolu-
tionary mechanisms. From this evolution, not only a
pattern-language could directly benefit but other program-
ming languages, too, by incorporating new constructs
evolving in and from the pattern-languages.

7.2. Our Plea
This work wants as well to be understood as advocating:

A Meta-Goal: a Renaissance of the Origins A pattern
language might do a small contribution to what we would
call the "renaissance of the origins": coming back to the
roots and rethink some of the decisions made on the long

way from the early days of programming to modern con-
temporary programming languages. During this long time,
a lot of concessions had to be made concerning the trade off
between possible programming language features and tech-
nical feasibility. These should be remembered as what they
are: temporary trade-offs and by no means necessities aris-
ing from the nature of things. Some of these decisions
might not any longer be completely right, for example, the
decision for languages with a closed syntax.

In addition to that, we would like to shed light on some
too familiar ideas of contemporary programming like
classes, methods, aspects, control structures and others,
thereby following the essence of science: making familiar
things unfamiliar. A more fundamental research might as
well reveal possibly forgotten ideas of the past still waiting
for their time to come; sometimes one has to step back in
order to jump forward.

A Meta-Goal: the Democratization of Language Devel-
opment The extensions of languages are done in a half-
transparent process – in the sense that user-participation is
mainly restricted to making requests but final decisions are
made by a small group of people in a standards committee.
With a pattern language every programmer could take part
in extending the language by the constructs she / he has in
mind. The more restrictive a language / notation is, the less
freedom a language allows, the more it reduces our creativ-
ity since right from the beginning our thoughts are forced
into the corset of this specific notation and the less room is
left for progress. Syntactic extensibility could lead to an
open marketplace for syntax where languages syntactically
advance on need and constructs are in competition with
each other concerning their usefulness instead of being
introduced – or not – in an authoritarian way. In any case,
there will automatically develop common idioms, as pro-
grammers have a natural interest in their programs being
readable by others; this is the same process of competing
exclusiveness and universality as it is happening with the
individual natural language(s) each of us uses.

A Plea for the Focus on Language Design There seems
to be a trend to compensate deficiencies in language design
with ever more elaborated programming tools. This "tool-
erism" has certain drawbacks: tools become out of date and
incompatible with the language or with other tools. Pro-
grammers have to spend a lot of time to integrate the differ-
ent tools and keep them up-to-date. One of the most preva-
lent arguments of those advocating tools is a circular argu-
ment: new languages would be disadvantageous as they
would not any longer be compatible with the existing tools!
We plea for a language oriented design instead of rather
than subservience to tools, good tools will follow good
languages automatically, we don't have to worry about that.

In addition to that, we plea for meta-complete languages
instead of "meta-ization" creating cascades of ever more
meta-levels or languages. We think that the existence of
several meta-levels is not a sign of quality but rather the
opposite as it shows that each level seems to suffer from a
lack of expressivity. We think that the creation of new, pure

and consistently designed languages, making a tabula rasa
should be preferred over overloading the languages cur-
rently en vogue until they finally go down with ever more
features. This approach is not contradictory to a continuous
evolution of languages: new languages – and new tools –
 derive from the experiences we have made with the former
ones: "new" does not necessarily mean completely different
but better.

A Plea for the Importance of Syntax In abstract pro-
gramming language theory one could up to a certain limit
(the readability for the analyst himself) neglect syntax and
concentrate on semantics only. However, this has nothing to
do with programming reality and leads to the widespread
underestimation of the importance of syntax which is re-
flected in subtleties such as the emotional preference pro-
grammers have for a syntax she / he is familiar with: pro-
grammers do not think in calculi but in symbols and they
want to use symbols for real programs, especially these
symbols they are already used to – why else would pro-
gramming languages syntactically refer so much to their
predecessors, e.g. Java to C++/C? Why else would Micro-
soft provide their .NET-framework – one API, (semanti-
cally) one language – in different syntaxes? It is therefore
the duty of software technology to provide programmers –
 especially those with customer contact – the tools they
need to express themselves in the way they want to. Syntax
does matter.

A Plea for more Risk and Dynamism π is a dynamic
language. As the syntax is subject to dynamic modifica-
tions, it cannot be statically proven that a program is cor-
rect. Yet, dynamic programming languages have shown to
be attractive for programmers. We are aware that π is a
"dangerous tool". In practice, we think, a programmer
would probably use a language (in form of a π-library) she/
he is familiar with and add only several new patterns. An
experienced language designer might use π in another,
more advanced way. In our opinion, freedom in program-
ming should not neglectfully sacrificed just for a higher
safety. Natural language is the most powerful tool of com-
munication we know and at the same time it is far from
being open to formal proofs as ambiguities in natural lan-
guage are resolved by further inquiries of the "pro-
grammed" person instead of using a (very restricted) un-
ambiguous language in the first place. In the future we will
therefore concentrate our research on how to give pro-
grammers (IDE-)support and intelligent feedback for
pattern-programming. Based on their experience, pro-
grammers themselves will learn how to write programs
which are adequate for them. So, with minimal personal
insight and partial program analysis, it is possible to write
type-safe π-programs. If we were afraid that our children
died of a car accident, then we might consider to never let
them drive a car, at all. Or we might think about giving
them the best training and advice around to prepare them as
good as we can for any eventuality. This is the concept that

π follows. π does not want to put any restrictions on the
programmer by force.

Our hope  is that π will be used as an open artifact for
studying the concept of patterns in programming and ex-
perimenting with many other new ideas and languages. In
our opinion, there should be a common open source stan-
dard pattern language for the community, like, for instance,
Haskell serves for functional programming. π could be a
first source of inspiration for such a language. At least,
π might serve as a basis for a lot of gedankenexperiments.

Acknowledgements
We are most indebted to Marc Wagner from Universität des
Saarlandes who gave us the idea of using an Earley-parser
for the realization of π as described in the work of John
Aycock and R. Nigel Horspool [2]. π would not exist with-
out the great help and technical knowledge of Felix Wolff
who implemented the parser. The articles most inspiring to
us concerning π were the works of Christopher Graham
Seaton on "Katahdin" [23], of Ceteva, Inc. on "XMF" [22],
of Jonathan Bachrach and Keith Playford on "The Java
Syntactic Extender (JSE)" [3] and of Claus Brabrand and
Michael I. Schwartzbach on "Growing Languages with
Metamorphic Syntax Macros" [7]. Finally, we thank the
members of our group, especially Andreas Sewe, Vaidas
Gasunias, Tatjana Korbmacher and Tom Dinkelaker for
their thorough feedback.

References
[1]	

 Eric Allen et al. Growing a Syntax Sun Microsystems,
	

 FOOL, 2009
[2]	

 John Aycock, R. Nigel Horspool Practical Earley Parsing
	

 University of Calgary, University of Victoria, Canada,
	

 The Computer Journal, Volume 45, Number 6, 2002
[3]	

 Jonathan Bachrach, Massachussetts Institute of
	

 Technology The Java Syntactic Extender (JSE)
	

 Keith Playford, Functional Objects, Inc., OOPSLA, 2001
[4]	

 Jonathan Bachrach D-Expressions: Lisp Power, Dylan Style
	

 Massachusetts Institute of Technology, USA,
	

 Keith Playford, Functional Objects Inc., Somerville, USA
[5]	

 Don Batory, Bernie Lofaso, Yannis Smaragdakis
	

 JTS: Tools for Implementing Domain-Specific Languages
	

 The University of Texas at Austin, ICSR, 1998-06
[6]	

 <Bigwig> http://www.brics.dk/bigwig, 2009-01-22
[7]	

 Claus Brabrand, Michael I. Schwartzbach
	

 Growing Languages with Metamorphic Syntax Macros,
	

 PEPM, 2002
[8]	

 Gilad Bracha Executable Grammars in Newspeak
	

 Cadence Design Systems, San Jose, California, USA,
	

 ENTCS, Volume 193, Pages 3-18, 2007-11
[9]	

 Martin Bravenboer, Eelco Visser Concrete Syntax for
	

 Objects Universiteit Utrecht, The Netherlands,
	

 OOPSLA, 2004

[10]	

 Boris Burshteyn Generation and Recognition of Formal
	

 Languages by Modifiable Grammars ACM SIGPLAN
	

 Notices, Volume 25, Number 12, Pages 45-53, 1990-12
[11]	

 Boris Burshteyn USSA–Universal Syntax and Semantics
	

 Analyzer ACM SIGPLAN Notices, Volume 27,
	

 Number 1, Pages 42-60, 1992-01
[12]	

 Alfonso Caracciolo di Forino Some Remarks on the Syntax
	

 of Symbolic Programming Languages Communication
	

 of the ACM, Volume 6, Number 8, Pages 456-460, 1963-08
[13]	

 T. E. Cheatham The introduction of definitional facilities
	

 into higher level programming languages AFIPS, 1966-11
[14]	

 Henning Christiansen A Survey of Adaptable Grammars
	

 Roskilde University Centre, SIGPLAN Notices,
	

 volume 25 number 11, pages 33-44, 1990-11
[15]	

 Tony Clark Beyond Annotations: A Proposal for Extensible
	

 Java (XJ) Thames Valley University, United Kingdom,
	

 Paul Sammut, James Willans, Cetava Inc.
[16]	

 Christopher Diggins Superlanguages: Syntactic and
	

 Semantic Supersets of other Languages 2008-03-12
[17]	

 Torbjörn Ekman, Görel Hedin The JastAdd Extensible Java
	

 Compiler OOPSLA, 2007-10
[18]	

 Bryan Ford Parsing Expression Grammars: A Recognition
	

 Based Syntactic Foundation POPL, 2004-01
[19]	

 The Fortress Language Specification
	

 Sun Microsystems Inc., 2007
[20]	

 Isabelle http://www.cl.cam.ac.uk/research/hvg/Isabelle
	

 2009-03-16
[21]	

 JastAdd http://jastadd.org, 2009-02-25
[22]	

 Tony Clark, Paul Sammut, James Willans Superlanguages –
	

 Developing Languages and Applications with XMF
	

 Ceteva Inc., 2008
[23]	

 Christopher Graham Seaton A Programming Language
	

 Where the Syntax and Semantics Are Mutable at Runtime
	

 Master's Thesis, University of Bristol,
	

 United Kingdom, 2007-05

[24]	

 Bent Brrun Kristensen et al. Abstraction mechanisms in the
	

 BETA programming language Aalborg University Center,
	

 Aalborg, Denmark, POPL, 1983
[25]	

 Logix http://www.livelogix.com/logix, 2009-03-02
[26]	

 Rats! – An Easily Extensible Parser Generator
	

 http://www.cs.nyu.edu/rgrimm/xtc/rats.html, 2009-02-27
[27]	

 Tim Sheard, Zino Benalssa, Matthleu Martel Introduction to
	

 multistage Programming Using MetaML Pacific Software
	

 Research Center, Oregon Graduate Institute of Science and
	

 Technology, 2000-02
[28]	

 Walid Taha A Gentle Introduction to Multi-stage
	

 Programming Rice University, Houston,
	

 Texas, USA, DSPG, 2003
[29]	

 Walid Taha A Gentle Introduction to Multi-stage
	

 Programming, Part II Rice University,
	

 Houston, USA, GTTSE, 2007
[30]	

 Valentin F. Turchin et al. Язык РЕФАЛ и
	

 его использование в задачах автоматизации
	

 программирования (English: The Language REFAL and its
	

 Application in the Automation of Programming)
	

 Inter-University Conference on the Automation of
	

 Programming of Economical Calculations, Moscow, 1967
[31]	

 Markus Völter Architecture as Language:
	

 A story InfoQ, 2009-01-28
[32]	

 M. P. Ward Language Oriented Programming
	

 Computer Science Department, Durham, 2003-01
[33]	

 Alessandro Warth OMeta: an Object-Oriented Language
	

 for Pattern Matching University of California, Los Angeles,
	

 USA, Ian Piumarta, Viewpoints Research Institute,
	

 Glendale, California, USA, Dynamic Languages
	

 Symposium, OOPSLA, 2007-10
[34]	

 Daniel Weise, Roger Crew Programmable Syntax Macros
	

 Microsoft Research Laboratory, PLDI, 1993
[35]	

 XLR: Extensible Language and Runtime
	

 http://xlr.sourceforge.net/concept/XL.html, 2009-02-19

